settlingTestMPI | analytical solution

Submitted by mbaldini on Tue, 12/17/2019 - 18:25

Dear all, I have a really basic question regarding the settlingTestMPI tutorial. As far as I understand it simulates the settling of a sphere in a still fluid and compares the simulation results with the analytical Stokes (creeping flow) solution. But I can't find a reference (paper) of the expressions used in the .m scrip. I understand that It performs and explicit integration of the position but I cannot find a reference of the velocity determination.

I've attached bellow the octave script.

Cheers,
Mauro

----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

%
close all;
clear;
clc;

%====================================%
% simulation data
%====================================%
path = '../../DEM/post/velocity.txt';
U_sim = data(:,2:4);
t_sim = data(:,1);
fprintf('final velocity of sim = %f/%f/%f m/s\n',U_sim(length(U_sim(:,1)),1),U_sim(length(U_sim(:,1)),2),U_sim(length(U_sim(:,1)),3) )

%====================================%
U_=0
X_=0
dt=0.001
tEnd=0.2
nuc = 1e-05
rhoc = 10
d_ = 0.0001
rhop = 3000
g=9.81
Uc=0
%====================================%
% analytical calculation
%====================================%
count=1;
for t=0:dt:tEnd
count=count+1;
t_(count)=t;
magUr = (U_(count-1)-Uc);
ReFunc = 1.0;
Re = magUr*d_/nuc;
if Re > 0.01
ReFunc += 0.15*Re^0.687;
end

Dc = (24.0*nuc/d_)*ReFunc*(3.0/4.0)*(rhoc/(d_*rhop));
U_(count) = (U_(count-1) + dt*(Dc*Uc + (1.0 - rhoc/rhop)*g))/(1.0 + dt*Dc);
X_(count) = X_(count-1) + dt*U_(count);
Re_(count) = Re;

end
fprintf('final velociy = %f m/s\n',U_(length(U_)))
fprintf('final position = %f m\n',X_(length(X_)))

%====================================%
% plot data
%====================================%
figure(1)
plot(t_,U_, 'k--')
hold on
plot(t_sim,-U_sim(:,2),'rd-')
legend("analytical - Stokes","simulation - DiFelice?")

%print('cfdemSolverPiso_settlingTestMPI.eps','-deps2')
print -color "cfdemSolverPiso_settlingTestMPI.png"

%figure(2)
%plot(t_,X_)

%figure(3)
%plot(t_,Re_)

mbaldini | Sat, 01/04/2020 - 13:06

Dear all, I found an article

Dear all, I found an article by Nouri et. al. thas uses the Basset-Boussinesq-Ossen equation dropping the Basset force. But I still don't understand completely the octave script. Could you give me a hint?
- Don't understand the bold part on the drag coeff.
- How this integration is made? It's a standar linarization and explicit integration?

Dc = (24.0*nuc/d_)*ReFunc*(3.0/4.0)*(rhoc/(d_*rhop));
U_(count) = (U_(count-1) + dt*(Dc*Uc + (1.0 - rhoc/rhop)*g))/(1.0 + dt*Dc);

Reference: Nouri, R., Ganji, D. D., & Hatami, M. (2014). Unsteady sedimentation analysis of spherical particles in Newtonian fluid media using analytical methods. Propulsion and Power Research, 3(2), 96-105.

Regards,
Mauro