
Open-Source DEM Simulations in an 
HPC Environment



Motivation

Compare the ability to run LIGGGHTS simulations in an HPC 
environment against commercial codes.

Consider the scalability of LIGGGHTS for very large simulations.



Part I - Benchmarks



Benchmarks

Commercial code:

ÅRun on an 8-core Intel X5365 3.0GHz chip workstation with 16 
GB RAM

ÅSimulations conducted in 2013

LIGGGHTS simulations:

ÅRun on a cluster consisting of Intel Xeon E5-2680v2 nodes       
(20 threads / node) and 64 GB RAM / node.

ÅSimulations were run both with and without use of processor 
assignment and load-balancing to gauge speed enhancement



Load balancing

ÅLoad balancing seeks to dynamically optimize the decomposition 
of the domain so as to more evenly distribute the work between 
the cores.

Default Balanced



Processor Assignment

ÅProcessor assignment manually decomposes the domain so as to 
take advantage of the system geometry and distribute the 
computational load evenly across the cores.

Default Balanced



Benchmark 1
Bin Flow

Fill a bin with a set of spherical 

particles that are allowed to 

settle under gravity.

Open the bottom of the hopper 

and allow the material to pour 

out.

Material flow rate was used to 

check simulations and ensure 

concordance. 



Benchmark 1 ïBin Flow

Model 1

Initial # of particles 300,000

Particle radius (m) 0.003

Timestep (sec) 1x10-5

Settling time (sec) 1.5

Flow time (sec) 3.0

LIGGGHTS default version ran ~11.5x faster than the 
commercial code using a single node

At 100 cores (5 nodes) and using load-balancing, able 
to achieve a ~70x speedup (1.5 days to 0.5 hr)



Model 2

Initial # of particles 3,000,000

Particle radius (m) 0.0014

Timestep (sec) 5x10-6

Settling time (sec) 1.5

Flow time (sec) 5.0

Commercial code was not run for this problem owing 
to excessive simulation time

Strong improvement in computational speed when 
using load-balancing

Benchmark 1 ïBin Flow



Parallelization efficiency in default mode is solid, if not 
spectacular, once we include multiple nodes.

Inclusion of load-balancing makes a significant 
difference, keeping efficiency >80% even at 100 
cores.

Model 2

Initial # of particles 3,000,000

Particle radius (m) 0.0014

Timestep (sec) 5x10-6

Settling time (sec) 1.5

Flow time (sec) 5.0

Benchmark 1 ïBin Flow



Benchmark 2
Paddle Mixer

Fill a twin-shaft paddle mixer 

with a set of spherical particles 

that are allowed to settle under 

gravity.

Start rotation of the mixing 

impellers

Mixing index was used to 

check simulations and ensure 

concordance.  



LIGGGHTS default version ran ~6.5x faster than the 
commercial code using a single node

When running across multiple nodes and using load-
balancing, able to achieve a ~26.4x speedup

Benchmark 2 ïPaddle Mixer

Model 1

# of particles 100,000

Particle radius (m) 0.002

Impeller speed (RPM) 190

Timestep (sec) 1x10-5

Flow time (sec) 12.0



LIGGGHTS default version ran ~5.3x faster than the 
commercial code using a single node

When running across multiple nodes and using load-
balancing, able to achieve a ~26.7x speedup (1 week 
to ~15 hrs)

Benchmark 2 ïPaddle Mixer

Model 2

# of particles 1,000,000

Particle radius (m) 0.001

Impeller speed (RPM) 190

Timestep (sec) 5x10-6

Flow time (sec) 12.0



Good scalability across multiple nodes

> 0.8 efficiency out to 100 cores when optimized

> 0.7 efficiency out to 100 cores in default mode

Benchmark 2 ïPaddle Mixer

Model 2

# of particles 1,000,000

Particle radius (m) 0.001

Impeller speed (RPM) 190

Timestep (sec) 5x10-6

Flow time (sec) 12.0



Benchmark 3
Continuous Blending (CB) Mixer

Feed a stream of spherical 

particles through a mixer at a 

constant mass flowrate

Residence time distribution for 

the entire unit was used to 

check simulations and ensure 

concordance.  



When run across a single node, LIGGGHTS is actually 
comparable to commercial code;  load-balancing 
actually detrimental!

Utilizing multiple nodes, able to decrease simulation 
time by ~3x

Benchmark 3 ïCB Mixer

Model 1

Feed rate (kg/min) 12.9

Particle radius (m) 0.003

Holdup (# particles) ~7,500

Timestep (sec) 2x10-5

Rotation rate (RPM) 1252

Simulation time (sec) 30



LIGGGHTS default version ran ~18.4x faster than the 
commercial code using a single node

When running across multiple nodes and using load-
balancing, able to achieve a ~63.6x speedup 
(reduction of > 30 days for this simulation)

Benchmark 3 ïCB Mixer

Model 2

Feed rate (kg/min) 12.9

Particle radius (m) 0.001

Holdup (# particles) ~305,000

Timestep (sec) 5x10-6

Rotation rate (RPM) 1252

Simulation time (sec) 30



Parallelization efficiency similar to, though slightly less 
than that of the high shear mixer example.

Inclusion of load balancing doesnôt strongly affect 
scalability (does affect overall time though)

Benchmark 3 ïCB Mixer

Model 2

Feed rate (kg/min) 12.9

Particle radius (m) 0.001

Holdup (# particles) ~305,000

Timestep (sec) 5x10-6

Rotation rate (RPM) 1252

Simulation time (sec) 30



Conclusions

From a computational efficiency standpoint, LIGGGHTS provides 
significant advantages over commercial codes:

Capacity

•Can run unlimited jobs without license restrictions

Capability

•Massively parallel architecture of code makes it significantly faster than 
commercial codes



Part II –Large Scale Simulation



Largescale simulations

Perspective:  Vsystem= 1 L, d = 100 mm, Ą 109 particles

ïO(106) particles at most for typical computational hardware

ïO(104) –O(105) for most studies

Focus is on the question of how large can we actually go?

ÅHow large of a simulation can the system even handle?

ÅHow well does the simulation scale as we throw more nodes at 
it?



Largescale simulations
System size considerations

Carried out a series of simple tests in which particles were initially 
located on an FCC lattice in a cubic domain.  Then execute 50 
timestepsto initiate contact between the particles and gauge 
memory utilization.

Simulations run on a cluster consisting of 320 nodes with Intel 
Xeon E5-2680v3 (24 threads / node) and 64 GB RAM / node.

Focus on maximum number of particles that could be simulated 
before exhausting the RAM in each node.



Large Scale Simulations
System size considerations

For a given number of cores, observe a linear progression in RAM usage with 
increasing number of particles



Large Scale Simulations
System size considerations

Observe a separation of trends at 
approximately 600 cores

As problems increase in size, observe a 
logarithmic trend relating the 
achievable system size to the number 
of cores used.

Extrapolating to 1e9 particles, would 
require 459,090 cores

Perspective:  DOE Titan machine (#2 
supercomputer in the world) has ‘only’ 
299,008 CPU cores and less RAM/core.



Largescale simulations
Parallelization efficiency

Carried out simulations using different benchmark problems 

All system initialized using ‘create_atoms’ to insert the desired 
number of particles at the outset

Simulation then run for 10,000 time steps

No specific processor assignment or load-balancing used



Large Scale Simulations
Parallelization Efficiency



Large Scale Simulations
Parallelization Efficiency



Large Scale Simulations
Parallelization Efficiency



Large Scale Simulations
Parallelization Efficiency



Large Scale Simulations
Parallelization Efficiency

Efficiency for simple systems is excellent at all scales;  somewhat less so for 
systems involving complex/moving geometry

Observe excellent parallelization efficiency for large systems.  Suspect this is due 
in part to the fact that the timestepgets very small,  and so we aren’t seeing large 
fluctuations in the system over the 10,000 timestepsconsidered here.

Reference times for 1e8 particles:

Simple cubic system:  

24,658 sec on 120 cores

3,420 sec on 960 cores

Paddle mixer:

74,960 sec on 120 cores

13,181 sec on 960 cores



Thank you for your attention


