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ABSTRACT  

Understanding ice rubble build-up is important in designing structures such as offshore 

platforms, bridge supports, and breakwaters for use in arctic and cold regions.  Past numerical 

investigations to understand rubble pile formation and ice loads against slopes in two 

dimensions indicate that ice thickness and structure slope angle are dominant parameters. 

This work uses a three-dimensional discrete element method (3D DEM) bonded particle 

model to simulate ice interacting with an upward-sloping cone.  As with past 2D work on 

slopes, this investigation considered ice thickness and slope angle, but also considered 

block/particle size and sheet composition.  Rubble pile characteristics of interest included 

height, shape, volume, and formation mechanisms (such as sliding, rotation, and collapse).  In 

extending the 2D slope to a 3D cone, the geometry of the Confederation Bridge across 

Canada’s Northumberland Strait was used a starting point. 

This paper focuses on qualitative observations and learnings arising from the 3D simulations. 

These insights contribute to our current understanding of ice interaction with cones and serve 

to guide others wishing to undertake similar 3D DEM research into ice. The paper concludes 

with a discussion of potential future extensions, such as the use of finely-tuned DEM models 

and parameters to more accurately estimate ice loads against conical structures, and the 

repetition of similar numerical experiments to include ridges. 

INTRODUCTION 

Understanding sea ice rubble build-up is important in designing structures such as offshore 

platforms, bridge supports, and breakwaters for use in arctic and cold regions.  Much research 

has been undertaken to understand rubbling on sloped structures through field observation 

(e.g., Brown et al. (2010)) and model tests (e.g., Lu et al. (2014)).  Similarly, there are a 

number of analytical approaches to this problem which have been developed to calculate 

extreme loads (e.g., ISO 19906:2010).  As well, ice rubbling on slopes has been simulated 

using numerical methods (e.g., Paavilainen and Tuhkuri (2013)). 

This paper focuses on qualitative observations and learnings arising from three-dimensional 

discrete element method (3D DEM) simulations of an ice sheet hitting an upward-sloping 

cone to observe rubble pile formation and clearance around the sides.  In contrast with past 

2D investigations of ice interactions with slopes, which use finite element methods (FEM) to 

determine ice sheet fracture, this investigation used a bonded particle model developed for the 

LIGGGHTS DEM code (see Kloss et al. (2012)) to realize fracture solely using DEM. 
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The discrete element method was initially developed by Cundall (1971) in the context of rock 

mechanics.  The method has since been used in a variety of domains, most notably in those 

involving granular materials (e.g., pharmaceutical mixing, agricultural grains, crushed ore) 

and brittle solids (e.g., rock, ice).  Early use of DEM to model ice can be seen in the works of 

Hopkins, Hibler, and Flato (Hopkins and Hibler (1991a, 1991b); Hopkins et al. (1991)) in 

which each block of unbreakable ice rubble is represented by a DEM particle.  DEM has also 

been used to model ice at larger scales: for example, Richard and McKenna (2013) represent 

each unbroken ice floe as a particle.  

Examples of the use of 3D DEM in ice research are few.  Most investigations into rubbling on 

slopes using DEM have been in two dimensions (e.g., Paavilainen and Tuhkuri (2012, 2013)), 

which serves well to represent a “wide” sloping structure, such as a caisson wall, shoreline, or 

breakwater. Work by Haase et al. (2010) considers the problem in 3D by using unbonded 

polygonal blocks of unconsolidated ice rubble to represent a ridge and keel striking the 

conical base of a pier of the Confederation Bridge across Canada’s Northumberland Strait.  

Other 3D DEM work is limited to that of Lubbad and Løset (2011), Metrikin and Løset 

(2013), Metrikin et al. (2012a, 2012b), and Vroegrijk (2012) on ship-ice interaction, Kioka et 

al. (2010) on interactions with piles, and Sorsimo and Heinonen (2014), Polojärvi and 

Tuhkuri (2014, 2013, 2009), and Polojärvi et al. (2012) on punch-through experiments.
1
 

Insights gained from the simulations featured in this work are useful in supporting and/or 

contrasting our current understanding of ice interaction with sloping structures (which has 

been arrived at through observation, model tests, analytical methods, and 2D simulations), 

and in guiding others wishing to undertake similar 3D DEM research.  In extending the 2D 

slope to a 3D cone, the geometry of the Confederation Bridge was used a starting point. 

SIMULATIONS 

Overview of the DEM Model 

The ice sheet is composed of rigid spherical ice particles of equal radius. At each timestep, the 

forces on each particle are calculated based on their contacting and bonded neighbours in 

order to explicitly update the position, velocity, and rotation of each particle at the next 

timestep.      

The contact force between two contacting (overlapping) particles, 𝑃𝑖 and 𝑃𝑗, is 

 𝐹𝑖𝑗 = 𝑘𝑛𝛿𝑛𝑖𝑗 − 𝛾𝑛𝑣𝑛𝑖𝑗⏟          
𝑛𝑜𝑟𝑚𝑎𝑙 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡 (𝐹𝑛)

+ 𝑘𝑡𝛿𝑡𝑖𝑗 − 𝛾𝑡𝑣𝑡𝑖𝑗⏟        
𝑡𝑎𝑛𝑔𝑒𝑛𝑡𝑖𝑎𝑙 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡 (𝐹𝑡)

, (1) 

where 𝐹𝑖𝑗 is the force of 𝑃𝑖 on 𝑃𝑗, 𝑘𝑛 and 𝑘𝑡 are coefficients of normal and tangential 

elasticity, 𝛾𝑛 and 𝛾𝑡 are coefficients of normal and tangential viscoelastic damping, 𝛿𝑛𝑖𝑗 and 

𝛿𝑡𝑖𝑗  are the normal and tangential overlap2 of 𝑃𝑖 and 𝑃𝑗, and 𝑣𝑛𝑖𝑗  and 𝑣𝑡𝑖𝑗 are the normal and 

tangential velocities of 𝑃𝑖 relative to 𝑃𝑗. Furthermore, 𝐹𝑡 is truncated to ensure that 𝐹𝑡 ≤ 𝜇𝐹𝑛, 

where 𝜇 is the coefficient of friction.
3
  These contact forces are illustrated in Figure 1. 

                                                 
1
 Two dimensional models in which each particle represents an ice floe can also have interpretations in 3D, by 

assuming that ice floe thickness is constant or governed by a distribution. 
2
 Whereas normal overlap is recalculated at each timestep from particle positions, tangential overlap is not a 

value that can be calculated for a single simulation timestep.  The tangential overlap is a “historical” measure of 

the tangential displacement between the particles for the duration of contact. 
3
 In particle collisions in which the tangential overlap, 𝛿𝑡𝑖𝑗, far exceeds the normal overlap, 𝛿𝑛𝑖𝑗, (e.g., two 

particles which closely skim each other) the forces calculated by equation (1) might result in tangential frictional 

forces which are disproportionately high in relation to normal elastic forces. Hence the need to truncate 𝐹𝑡.   



The values of 𝑘𝑛, 𝑘𝑡, 𝛾𝑛, and 𝛾𝑡 are calculated in LIGGGHTS from Young’s modulus, 

Poisson’s ratio, coefficient of restitution, particle diameter, particle mass, and normal overlap 

according to a Hertz-Mindlin derivation similar to that found in Pöschel and Schwager 

(2005).  Because 𝑘𝑛, 𝑘𝑡, 𝛾𝑛, and 𝛾𝑡 depend on normal overlap, they vary with each timestep.  

Particle bonds are based on the parallel bond model described in Potyondy and Cundall 

(2004).  In this model, a bond behaves like a set of parallel springs forming a cylindrical strut 

between the particles. The bonds resist tension, compression, shear, twisting, and bending as a 

function of normal and tangential bond stiffness.  This behaviour is illustrated in Figure 2.  

Bonds are broken when the normal or tangential stress on the bond (𝜎 and 𝜏, respectively) 

exceed a specified strength. The values of 𝜎 and 𝜏 are calculated according to 

 𝜎 =  
|𝐹𝑛|

𝜋𝑅𝑏
2 +

4|𝑇𝑡|

𝜋𝑅𝑏
3 , (2) 

 𝜏 =  
|𝐹𝑡|

𝜋𝑅𝑏
2 +

2|𝑇𝑛|

𝜋𝑅𝑏
3 , (3) 

where 𝑇𝑡 and 𝑇𝑛 are the relative tangential and normal torque on the particles (i.e., “bend” and 

“twist”) and 𝑅𝑏 is the radius of the circular cross-section of the cylindrical bond strut.  

 

 
 

Figure 1: Contact forces (normal/tangential 

spring dashpots, tangential frictional slider). 

Figure 2: Parallel bonds resist tension, 

compression, shear, twisting, and bending. 

The cone is composed of surface elements resulting from a meshing.  Once LIGGGHTS 

determines that an ice particle has come in contact with a surface element, the same particle-

particle contact calculations are used to resolve the particle-surface contact, where the surface 

element is represented as a particle with radius approaching infinity. Whether the particle 

collides with the surface on a facet, edge, or corner, the same stiffness and damping values are 

used, with normal forces being directed from the point of contact through the particle centre. 

In this study, all adjacent particles in the ice sheet were bonded at the outset and bonds were 

not allowed to reform once they were broken (i.e., no refreezing); moreover, ice particles 

were not allowed to adfreeze to the cone.  To represent a large ice sheet rubbling against the 

cone, the (finite-sized) ice sheet was bounded by walls on the sides, with the cone moving 

into the ice. Gravity, buoyancy, and water drag forces were also included in the simulations. 

Simulation Parameters 

The bulk of this investigation consists of 14 simulations (supported by many additional 

simulations which served to understand the effects of bond parameters and particle packings).  

The parameters for the simulations are given in Table 1 and Table 2. 

𝐹𝑛 
𝐹𝑡 

𝐹𝑡 ≤ 𝜇𝐹𝑛 

2𝑅𝑏  



Particles were packed into the ice sheet using a hexagonal close packing, which maximized 

the volume occupied by the particles relative to the inter-particle space.  Early simulations 

which used a cubic packing led to flexure and force chains which tended to follow the 

orthogonality inherent in the packing, which was unrealistic.  Because any packing of non-

overlapping spheres to represent a non-spherical object (e.g., ice sheet) will result in a 

significant amount of empty space, either the density of the ice particles/water or the volume 

calculation associated with the ice particles must be adjusted in order to ensure that buoyancy 

is accurately modelled.  For this study, the density value and volume calculations were not 

adjusted (i.e., 𝜌𝑖𝑐𝑒 = 900 kg∙m
-3

, 𝜌𝑤𝑎𝑡𝑒𝑟 = 1010 kg∙m
-3

, from Paavilainen and Tuhkuri 

(2013)), recognizing that the modelled ice sheet will sit slightly lower in the water column. 

To stabilize the buoyant particles, a drag force was added using a value of 0.00188 N∙s∙m
-2

 for 

the viscosity of sea water (Engineering Toolbox, 2014).  No “added mass” effect was 

accounted for, as the speed of the ice sheet (cone) was reasonably slow (0.5 m∙s
-1

). 

Given that the nature of the investigation is qualitative, reasonable parameter values for bulk 

ice sheets are reasonable values for the particles.  Notably, a Young’s modulus of 10
9
 N∙m

-2 

(i.e., 1 GPa)
4
 and a Poisson’s ratio of 0.3 were used for the ice particles, the latter value being 

taken from Paavilainen and Tuhkuri (2013).  In turn, an upper bound for the timestep, 𝑡̅, of 

3.107×10
-4

 s was determined using the p-wave velocity, 𝑣𝑝, according to: 

 𝑡̅ ≤
𝑑𝑚𝑖𝑛
𝑣𝑝

= 𝑑𝑚𝑖𝑛 [
𝐸(1 − 𝜈)

(1 + 𝜈)(1 − 2𝜈)𝜌𝑖𝑐𝑒
]

−
1
2

 , (4) 

where 𝑑𝑚𝑖𝑛 is the diameter of the smallest particle.  Based on this upper bound, a 

conservative timestep of 10
-5

 s was used in all simulations. 

While an ice-ice coefficient of friction value of 0.1 was used by Paavilainen and Tuhkuri 

(2013) for their highly regular polygonal blocks, these simulations used a value of 0.3 as the 

spherical particles actually represent irregular surfaces which may be experiencing some 

crushing when they contact neighbouring blocks of rubble.  For the same reason, the ice-cone 

coefficient of friction value of 0.3 was taken from the work of Paavilainen and Tuhkuri 

(2013), and a very low coefficient of restitution for ice-ice and ice-cone interactions was used 

(0.01).  As was the case with the Young’s modulus, detailed calibration to represent bulk 

effects was not considered. 

The radius of the circular cross-section of the cylindrical particle bond strut, 𝑅𝑏, was set to the 

particle radius.  The normal bond stiffness per unit area, �̅�𝑛, was derived according to 

 �̅�𝑛 =
𝑘

𝐴𝑏𝑜𝑛𝑑
=
𝐸

𝑙
=
𝐸

𝑑
 . (5) 

The tangential bond stiffness per unit area, �̅�𝑡, was set to the same value.   

The most challenging parameter values to set were those of the bonds strengths.  The 

maximum normal and tangential bond strengths, 𝜎𝑚𝑎𝑥 and 𝜏𝑚𝑎𝑥, were set to be equal at about 

9×10
4
 N∙m

-2 
(i.e., 90 kPa).  This value is such that the ratio of bond strength to particle 

stiffness (
𝜎𝑚𝑎𝑥

𝐸
 = 9×10

-5
), which largely governs flexural failure, is comparable to that of the 

ratios of flexural strength of an ice sheet (~5×10
5
 N∙m

-2
) to its stiffness (~5×10

9
 N∙m

-2
).  For 

further discussion on these values, see Palmer and Croasdale (2013) and ISO 19906:2010.   

                                                 
4
 Early calibration testing associated with other research by one of the authors suggests a 1 to 3 ratio between 

particle stiffness and bulk stiffness.   



In generating the cones, 12 facets were used to ensure a reasonably “curved” surface without 

increasing the computational complexity.  Compared with 12-faceted cones, preliminary 

simulations using 64 facets showed little difference in rubble pile formation.  Similarly, 

whether the ice sheet hit the cone at a leading edge (join of two facets), or hit it squarely on a 

facet, proved largely irrelevant: after a brief period, the shape of the rubble pile negated the 

effect of the profile of the cone.  When the ice sheet hit the cone squarely on a facet, only very 

localized increases in rubble height were observed on the face (i.e., minor localized ride-up). 

The cone angles used for the study were 52° and 30°.
5
  The 52° cone, which also features an 

increased cone angle of 78° near the top, matches those found on the Confederation Bridge 

(see Brown et al. (2010)).  For each cone, the depth below the waterline and the diameter at 

the waterline was constant.  The ice speed of 0.5 m∙s
-1 

was considered reasonable and within 

the range of values suggested in ISO 19906:2010 for several arctic locations.  

In setting the size of the ice sheet, the intent was to reduce the boundary effects resulting from 

the immovable bounding walls without significantly increasing the number of particles.  The 

simulations featuring a single layer of particles had about 18 m of extra ice on each side of the 

cone (i.e., distance from the edge of the cone to the bounding wall) and 50 m of extra ice on 

the far end, whereas the simulations featuring three layers of particles had about 13 m of extra 

ice on each side and 25 m of extra ice on the far end.   

Table 1: Common simulation parameter values. 

 Parameter Units Value 

P
a
rt

ic
le

s 

Young’s modulus, 𝐸 N∙m
-2

 10
9 

Poisson ratio, 𝜈 - 0.3 

Density, 𝜌𝑖𝑐𝑒 kg∙m
-3 

900 

Coeff. of ice-ice friction  - 0.3 

Coeff. of ice-cone friction  - 0.3 

Coeff. of ice-ice restitution  - 0.01 

Coeff. of ice-cone restitution  - 0.01 

Packing - HCP 

W
a
te

r 

Density, 𝜌𝑤𝑎𝑡𝑒𝑟 kg∙m
-3

 1010 

Viscosity N∙s∙m
-2 

0.00188 

C
o

n
e 

Ice (cone) velocity m∙s
-1

 0.5 

Cone diameter at waterline m ~14 

Depth of cone below waterline m 4 

Height of cone above waterline 
52/78° m 11 

30°
 

m 7.48 

M
is

c
. 

Timestep, 𝑡̅ s 10
-5 

                                                 
5
 The 30° cone, which is unlikely to be seen in actual design due the increase in material cost, has been taken 

from the work of Paavilainen and Tuhkuri (2013).  Though the 30° angle makes more sense in the 2D context 

(e.g., a shoreline) the 30° cone has been useful in the 3D context to understand the impact of an extreme design. 



Table 2: Test matrix. 

 Parameter Units 
Simulation 

52 53 54 55 56 57 61 62 63 64 65 66 70 71 

Ic
e 

sh
ee

t 

Length m 100 100 50 50 100 100 100 100 50 50 100 100 100 100 

Width m 50 50 40 40 50 50 50 50 40 40 50 50 50 50 

Thickness, ℎ m 1 1 ~1 ~1 0.5 0.5 1 1 ~1 ~1 0.5 0.5 1 0.5 

# of layers of particles, 𝑤 - 1 1 3 3 1 1 1 1 3 3 1 1 1 1 

P
a
rt

ic
le

s 

Diameter, 𝑑 =
ℎ

1+(𝑤−1)√2/3
 m 1 1 0.38 0.38 0.5 0.5 1 1 0.38 0.38 0.5 0.5 1 0.5 

Bond radius, 𝑅𝑏 =
𝑑

2
 m 

N
o
 b

o
n
d
in

g
 

N
o
 b

o
n
d
in

g
 

N
o
 b

o
n
d
in

g
 

N
o
 b

o
n
d
in

g
 

N
o
 b

o
n
d
in

g
 

N
o
 b

o
n
d
in

g
 

0.5 0.5 0.19 0.19 0.25 0.25 0.5 0.25 

Normal bond stiffness per 

unit area, �̅�𝑛 =
𝐸

𝑑
 

N∙m
-3

 10
9 

10
9
 2.63×10

4
 2.63×10

4
 2×10

4
 2×10

4
 10

9
 2×10

4
 

Tang. bond stiffness per unit 

area, �̅�𝑡 = �̅�𝑛 
N∙m

-3
 10

9
 10

9
 2.63×10

4
 2.63×10

4
 2×10

4
 2×10

4
 10

9
 2×10

4
 

Max. normal bond stress, 

𝜎𝑚𝑎𝑥 
N∙m

-2
 9×10

4 
9×10

4
 

10
5
 10

5
 

9×10
4
 9×10

4
 6×10

4
 6×10

4
 

Max. tangential bond stress, 

𝜏𝑚𝑎𝑥 = 𝜎𝑚𝑎𝑥 
N∙m

-2
 9×10

4
 9×10

4
 

10
5
 10

5
 

9×10
4
 9×10

4
 6×10

4
 6×10

4
 

M
is

c.
 Cone angle, 𝛼 degrees 52 30 52 30 52 30 52 30 52 30 52 30 30 30 

Time simulated, 𝑡𝑚𝑎𝑥 ⋅ 𝑡̅ s 100 100 50 50 100 100 100 100 50 50 100 100 100 100 



OBSERVATIONS 

Impact of Bonds on Rubbling 

For comparative purposes, three metrics were used to quantify the rubble pile: the height of 

the highest particle (𝑧𝑚𝑎𝑥
𝑡 = max{𝑧𝑝

𝑡 , 𝑝 ∈ 𝑃}), the height (depth) of the lowest particle 

(𝑧𝑚𝑖𝑛
𝑡 = min{𝑧𝑝

𝑡 , 𝑝 ∈ 𝑃}), and the summed deviation of the particles from the height of the 

highest particle at 𝑡 = 0 (i.e., the floating level;  Σ(|Δ𝑧|)𝑡 = Σ𝑝∈𝑃|𝑧𝑝
𝑡 − 𝑧𝑚𝑥

0|), where 𝑃 is the 

set of all particles in the simulation, and 𝑧𝑝
𝑡  is the height of particle 𝑝 at the current timestep 𝑡.  

Each metric is based on particle centres, thereby removing diameter from the calculation. 

In the case of an ice sheet composed of a single layer of particles (𝑤 = 1), bonding had a 

significant impact on rubbling by making the rubble pile more extreme in height/depth. This 

impact is illustrated in Figure 3, Figure 4, and Figure 5 which compare 𝑧𝑚𝑎𝑥, 𝑧𝑚𝑖𝑛, and 

Σ(|Δ𝑧|) values between non-bonded and bonded simulations using the same parameters.  

Notably, once a “steady-state” rubble pile developed, the height of the highest particle was 4 

to 6 times higher in simulations using bonded particles. In the case of thicker ice, the earliest 

parts of the ice-cone interaction saw maximum heights greater than 10 times higher with 

bonded particles, and the lowest particles were about 1.5 to 2 times deeper in the 

“steady-state”.    

  

 

Figure 3: 𝑧𝑚𝑎𝑥 and 𝑧𝑚𝑖𝑛, T52 and T61. 

 

Figure 4: 𝑧𝑚𝑎𝑥 and 𝑧𝑚𝑖𝑛, T56 and T65. 

 

Figure 5: Σ(|Δ𝑧|), T52, T61, T56, and T65. 

In the case of a 3-layer sheet (𝑤 = 3), bonding caused the maximum height of the rubble pile 

to be 4 to 5 times higher, yet the minimum height (depth) was raised slightly (Figure 6); 

moreover, the values for Σ(|Δ𝑧|) were nearly identical in the bonded and unbonded case 

(Figure 7).  These results suggest that, for bonded particles, a significant increase in height of 



a few particles at the top of the rubble pile was offset by a similar significant increase in the 

number of particles sitting closer to the waterline.  Overall, bonding caused the rubble pile to 

ride higher and sit higher relative to the waterline.     

 

 

Figure 6: 𝑧𝑚𝑎𝑥 and 𝑧𝑚𝑖𝑛, T54 and T63. 

 

Figure 7: Σ(|Δ𝑧|), T54 and T63. 

Early simulations determined that 𝜎𝑚𝑎𝑥 and 𝜏𝑚𝑎𝑥 did not have a wide range with respect to 

effectively demonstrating flexural failure of the ice sheet.  This sensitivity is illustrated in 

Figure 8 (flexural failure is realistic), Figure 9 (the ice is “weak”), and Figure 10 (the ice 

holds together, but is “springy).   

 

 

Figure 8: T61 (𝜎𝑚𝑎𝑥 = 𝜏𝑚𝑎𝑥 = 9×10
4
 N∙m

-2
, 

ℎ =  𝑑 = 1m, 𝛼 = 52°). 

 

Figure 9: “Weak” ice in T40 (similar to T61, 

but 𝜎𝑚𝑎𝑥 = 𝜏𝑚𝑎𝑥 = 8×10
4
 N∙m

-2
). 

 

Figure 10: “Springy” ice in T47 (similar to T61, but 𝜎𝑚𝑎𝑥 = 𝜏𝑚𝑎𝑥 = 1×10
5
 N∙m

-2
). 

Very early simulations investigated the use of a simple bond breakage condition based upon 

displacement: if two bonded particles separated by more than a specified distance, the bond 



would break.  This displacement-based breakage condition, though simple to understand, 

meant that the torque on a particle did not contribute to bond fracture, which is unrealistic. 

Hence the breakage conditions of equations (2) and (3) were adopted. 

Sheet Composition 

The simulation which best reflected past observations at the Confederation Bridge presented 

in Brown et al. (2010) was T63 (see Figure 11) which used three layers (𝑤 = 3) to generate 

the 1m thick sheet.  Generally, the use of multiple layers with the hexagonal close packing 

allowed irregular slabs of ice to flex, break, rotate, and slide.  Some blocks “tumbled” and 

broke into smaller blocks.  In some cases, local fracturing occurred as individual particles 

chipped off the sides.  Figure 11 shows a large intact slab of ice sitting on the top of the 

rubble pile and Figure 12 shows intact slabs of ice on the interface between the rubble pile 

and the cone (viewed from the perspective of the cone, which has been removed). 

The use of multiple layers of particles to form the ice sheet led to greater realism; however, 

this also led to much slower simulations as the number of particles in a sheet of fixed size 

grows according to θ(𝑤3), where 𝑤 is the number of layers used to construct the sheet. 

Notably, T61, which simulated a 100m×50m×1m 1-layer sheet composed of 5729 particles 

interacting for 100s, took 77171s to run on one processor, whereas T63, simulating a 

50m×40m×1m 3-layer sheet composed of 48048 particles interacting for 50s,  took 868487s 

to run on two processors. 

  

 

Figure 11: T63 (𝑤 = 3), 𝑡 = 1500000. 

 

Figure 12: T63 (𝑤 = 3), 𝑡 = 650000, cone 

removed. 

Sheet Thickness 

The comparisons of T61 and T65 that can be made using Figure 8 and Figure 13 illustrate the 

differences in the rubble pile between a 1m thick sheet (ℎ = 1m) and a 0.5m thick sheet (ℎ = 

0.5m). The ice in the thicker sheet broke into larger slabs which rode higher and were forced 

deeper, whereas the thinner sheet mostly broke into individual particles. 

 



 

Figure 13: T65 (𝛼 = 52°, ℎ = 𝑑 = 0.5 m), 𝑡 = 1625000. 

CONCLUSIONS AND FUTURE WORK 

This work uses a three-dimensional discrete element method (3D DEM) bonded particle 

model to simulate ice interaction with an upward-sloping cone to observe rubble pile 

formation and clearance around the sides.  In contrast with past 2D investigations of ice 

interactions with slopes, which use finite element methods (FEM) to determine ice sheet 

fracture, this investigation realizes fracture solely using DEM.  

Generally, the simulations demonstrated key ice-cone interaction processes, such as flexural 

failure and rubble pile ride-up, rotation, and collapse. With respect to the impact of ice 

thickness on rubbling, results are consistent with past 2D DEM work of Paavilainen and 

Tuhkuri (2012): thicker ice leads to a rubble pile of greater height and depth. 

The use of multiple layers of particles to form the ice sheet led to greater realism; however, 

this also led to much slower simulations. Future convergence testing could identify the 

optimal number of layers which effectively balances computation time with accuracy. 

The values for normal and tangential particle bond strength which best showed the failure of 

the ice in flexure did not have a wide range. Future extensions of this research should tailor 

these bonding parameters (including unequal normal and tangential components) to more 

accurately represent the flexural strength of ice, and implement bond visualization to better 

visualize the fracture process. 

Improved representation of ice properties through the development of models that better 

capture particle contacts, bonding, ice defects, and strength variations, will enable the 3D 

DEM simulations performed in this study to be enhanced.  Notably, ridges can be added, 

rubble can be allowed to refreeze, and material parameters can be calibrated to allow 

measurement of forces.  Further numerical experiments building off those presented in this 

work will allow us to better understand the complex interaction of ice against sloping 

structures for a range of ice conditions. 
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