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Abstract

Fluid-structure interaction (FSI), as one of the most important representatives of the field
of the so-called “multi-physics problems”, is concerned with any kind of static, moving,
and/or deforming structural/solid components in contact with a fluid. It includes a vast
variety of problems, ranging from large-scale examples such as dynamic instabilities in
structural engineering (e.g. a bridge subject to a strong wind) or the mechanical strain
and deformation in aircraft wings or turbine blades, to applications in biomechanics and
medicine (e.g. the blood stream through thin flexible vessels). As it is the case with many
complex physical problems, here, too, apart from experiments, numerical modelling and
simulation are essential for the investigation of the system under consideration. Conse-
quently, much effort has been expended on the development and application of numerical
methods and computational approaches, however, despite the high attention there still is
a lack of established methods which are capable of dealing with a general problem of FSI,
offering accuracy, robustness, as well as efficiency.

In the present work an unconventional approach to FSI is developed and implemented,
based on the direct coupling of flexible multibody system dynamics (MBD) on the struc-
tural side with smoothed particle hydrodynamics (SPH) for the representation of the fluid.
In contrast to classical advanced approaches [1], it offers both a very accurate and sophis-
ticated modelling of the systems structural components, and an efficient model on the fluid
side, capable of dealing with arbitrary and arbitrarily moving and/or deforming bound-
aries/geometry as well as free surface flows. At that, the whole implementation is based
on the coupling of two already existing simulators – HOTINT for the flexible multibody
system and LIGGGHTS for the SPH fluid dynamics.

After the discussion of the underlying theory on each side and a short documentation of
HOTINT and LIGGGHTS a suitable contact formalism for the interaction between struc-
ture and fluid is introduced, followed by the development of a coupling scheme and interface
for the two simulators. Then, an overview of the actual implementation and the coupled
program flow is presented, and finally, the work is concluded by the application of the
approach to various test examples for investigation of consistency, stability, computational
performance, and quantitative verification.
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Symbols and notation

x . . . . . . . . . . . . . . . . . scalar quantity

r . . . . . . . . . . . . . . . . . vector quantity (column vector)

ri = (r)i . . . . . . . . . . i-th Cartesian component of vector r = riei

|q| , |v| . . . . . . . . . . . . absolute value of the scalar q, l2-norm of the vector v

M . . . . . . . . . . . . . . . . second-rank tensor quantity

Mij . . . . . . . . . . . . . . . component (i, j) of the matrix representation of a second-rank tensor M
in Cartesian coordinates

MT . . . . . . . . . . . . . . . transpose of a matrix M

M−1 . . . . . . . . . . . . . . inverse of a matrix M

I = IT . . . . . . . . . . . . . unity tensor I

a · b . . . . . . . . . . . . . . dot product of the vectors a and b

a× b . . . . . . . . . . . . . vector cross product of the vectors a and b

a ◦ b . . . . . . . . . . . . . . dyadic product of the vectors a and b

Ma . . . . . . . . . . . . . . . matrix-vector product of the matrix M and the vector a

di

dqi f , ∂i

∂qi f . . . . . . . . i-th total and partial derivative of f with respect to a parameter q
for i = 0 this is equivalent f itself

d
dtq = q̇ . . . . . . . . . . . time derivative of a quantity q

∇rf = ∂
∂rf . . . . . . . gradient of the scalar function f with respect to r = riei in Cartesian

= ei
∂
∂ri
f coordinates

∂g
∂r = (∇r ◦ g)T . . . gradient of the vector function g with respect to r = riei in Cartesian(
∂g
∂r

)
ij

= ∂gi
∂rj

coordinates (yielding a second-rank tensor)

∇r · g = ∂
∂ri
gi . . . . . divergence of g with respect to r = riei in Cartesian coordinates

4rf = ∑
i
∂2

∂r2
i
f . . . laplace operator applied to f with respect to r = riei in Cartesian

coordinates
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Symbols and notation

Aqf(q, q′, ...) . . . . . . arbitrary operator A with respect to q applied to f = f(q, q′, ...),
evaluated at the point (q, q′, ...)

Aqf(q, ...)|q0,... . . . .
or Af |q0,...

arbitrary operator A with respect to q applied to f = f(q, ...),
evaluated at the point (q0, ...); arguments may be omitted if clear
from the context

Furthermore, unless noted otherwise, the Einstein summmation convention is used for sub-
script indices, i.e. when a subscript index variable appears twice in a single term it effectively
means the summation of that term over all possible values of that index.

aibi =
∑
i

aibi = a · b
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1. Introduction

1.1. The problem of fluid-structure interaction

Along with the steady and substantial increase of computational power in the course of
the last three decades, a wide range of computational methods and techniques have been
developed in order to address complex problems in various fields of scientific research and
applied sciences. Naturally, this development started from solution approaches to specific
examples, and eventually led to powerful general methods applicable to all kinds of problems
or classes of problems. Considering the latter, the class dealing with problems where more
than one physical effect is involved comprises the so-called “multi-physics problems”, among
the most important of which is fluid-structure interaction (FSI), challenging with respect
to both modelling and computational issues [2].

Fluid-structure interaction is concerned with interactions of some movable and/or de-
formable elastic structure/solid with an internal or surrounding fluid flow, one of the most
relevant and most intensely studied coupled problems; the variety of FSI occurences is abun-
dant. Despite the high attention there still is a lack of established computational methods
which offer accuracy, robustness, efficiency, as well as flexibility, allowing to model and
simulate general problems in this inherently multi-disciplinary field [3]. In the approach of
developing a method with these capabilities, amongst many other issues the following key
questions need to be considered [2]:

• How can the coupling itself – the mechanisms of the actual interaction between the
fluid and the structural components – be described appropriately?

• What are the advantages and drawbacks of the various discretization schemes – the
numerical mathematical models – used on the flow and on the structure side?

• What are the possibilities and limits of monolithic and non-monolithic, i.e. partitioned
or hybrid, coupling schemes?

• How can a flexible data and geometry model look like – especially against the back-
ground of large geometric or even topological changes?

• How reliable are the results, and what about error estimation? Which “benchmark
examples” can be used for quantitative verification and examination of specific prop-
erties?

8



1.2. MOTIVATION AND OBJECTIVES

• What can be said about the design of robust and efficient solvers?

• How can sensitivity and optimization issues enter the game?

1.2. Motivation and objectives

Fluid-structure interaction (FSI) plays an important role in the complex field of multi-
physics phenomena. In fact, almost any real-life problem in fluid dynamics or mechanics
also involves the other respective field as well, however, in many cases a reasonably simplified
model can be introduced with the focus being exclusively on one of the two sides, while either
incorporating the other one only in simple boundary conditions or neglecting its influence
at all. Then again, a variety of problems arise from inherent mechanisms of the interaction
between fluid and solid structures, and thus constitute the actual representatives in the
field of FSI requiring a fully coupled numerical modelling. Well-known examples would be
dynamic instabilities in structural enineering, e.g. a bridge subject to a strong wind, the
mechanical strain and deformation in aircraft wings or turbine blades, or the resistance of
embankments and barriers to water waves or avalanches.

Many conventional attempts to deal with FSI drastically simplify either the fluid or the
structural side (see, for example, [7]), which may lead to insufficient model accuracy. One
advanced (fully coupled) classical approach would be the introduction of a particle-based
model, such as smoothed particle hydrodynamics (SPH), for the fluid part and some kind of
lattice model for the flexible solids part. The advantage here lies in the similar structure and
compatibility in the implementation, as well as high computational efficieny and accurate
representation of the fluid; the models for the structural side, however, are usually of low
convergence order, and may even lead to numerical instability in case of stiff systems. The
second classical advanced approach is based on a finite element formulation for the solid
structures and a finite volume model for the fluid, which both are the most well established
and widely used methods in either respective field, consequently yielding overall accurate
solutions. The downside, on the other hand, are the high computational costs, since global
remeshing is required in every time step, and difficulties arise particularly with free surface
flows, or deformations superimposed to large rigid body motion on the structural side.

By direct coupling of the meshfree particle-based method SPH for the representation of the
fluid and advanced methods of flexible multibody dynamics for the description of the solid
parts the thesis at hand is an attempt of merging the benefits of both of above discussed
approaches. Starting with the very general problem situation and theoretical background
from both the solid and the fluid perspective, followed by the introduction and develop-
ment of a mathematical model, along with an interface definition to allow for simulation
and numerical investigation of coupled fluid-structure problems, the main objective was the
development and implementation of a stable, flexible and expandable method for the cou-
pling of two already existing simulators – LIGGGHTS for the fluid simulation and HOTINT

9



CHAPTER 1. INTRODUCTION

for the multibody system dynamics. Conclusively, the approach is applied to benchmark
problems and simple problem situations for the investigation and analysis of the whole
systems behavior, stability, consistency, as well as quantitative verification.

Of course, there will always be some perspective with regards to what has been discussed
in the previous section. However, some questions will be merely touched upon, some even
will be left open. Therefore, one should bear in mind that this thesis is not and cannot be
intended to make a claim of completeness, neither with respect to the problem of FSI in
general, nor the considered specific approach itself.
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2. MBD and HOTINT

2.1. A short course on multibody dynamics

2.1.1. Definition

Multibody dynamics, or, in short, MBD, is concerned with the analysis of the dynamics
of so-called “multibody systems” (MBS). At that, a multibody system is a general me-
chanical and structural system consisting of individual subsystems or components which
themselves may be rigid or deformable bodies, interconnected to each other or (kinemati-
cally) constrained in whatsoever way. The components may undergo large translational and
rotational motion as well as any kind of deformation, induced by external forces, internal
stress, contact and constraint forces.

Clearly, the underlying basis to an analysis of dynamics of multibody systems is the un-
derstanding of the behavior of the subsystems. The motion of material bodies formed the
subject of some of the earliest researches pursued in three different fields, namely, rigid
body mechanics, structural mechanics, and continuum mechanics. The term rigid body
implies that the deformation of the body under consideration is assumed small such that
the body deformation has no effect on the gross body motion. Hence, for a rigid body,
the distance between any two of its particles remains constant at all times and all config-
urations. The motion of a rigid body in space can be completely described by using six
generalized coordinates. However, the resulting mathematical model in general is highly
nonlinear because of the large body rotation. On the other hand, the term structural me-
chanics has come into wide use to denote the branch of study in which the deformation is
the main concern. Large body rotations are not allowed, thus resulting in inertia-invariant
structures. In many applications, however, a large number of elastic coordinates have to be
included in the mathematical model in order to accurately describe the body deformation.
From the study of these two subjects, rigid body and structural mechanics, the vast field
known as continuum mechanics has evolved, wherein the general body motion is considered,
resulting in a mathematical model including the difficulties of both of the previous cases,
i.e. nonlinearity and large dimensionality [4].

Thus, the equations governing the problems of multibody dynamics usually present them-
selves as complex non-linear problems without exact analytical solutions; consequently,

11



CHAPTER 2. MBD AND HOTINT

the focus here is on the development and implementation of numerical or computational
methods.

2.1.2. Mathematical formulation

In general we are looking at a system consisting of various bodies with numbers i ∈
{1, ..., nb} and corresponding generalized coordinates qi, which may undergo arbitrary trans-
lational and rotational motion as well as elastic or plastic deformation, while satisfying a
set of nc algebraic constraint equations:

Cj(q1, q2..., qnb , t) = 0 j ∈ {1, ..., nc}. (2.1)

The system of equations of motion can be written down by the use of Lagrange’s equations,
where T i denotes the kinetic energy of body i,Qi the vector of the corresponding generalized
forces, and λj , j ∈ {1, ..., nc}, Langrange multipliers to account for the constraint equations
[8],

d

dt

(
∂T i

∂q̇ik

)
− ∂T i

∂qik
+ λj

∂Cj
∂qik

= Qik j ∈ {1, ..., nc} and k ∈ {1, ..., nif}, (2.2)

where nif is the number of generalized coordinates or, equivalently, degrees of freedom
(DOF) of body i without constraints.

In many practical applications, a multibody system can be described with the set of equa-
tions (2.1) and (2.2); mathematically, it is a coupled, usually highly nonlinear system of
Nf partial differential equations and nc algebraic equations in space and time of in total
nc + Nf variables, where Nf = ∑

i n
i
f denotes total number of generalized coordinates of

the whole system; the total number of degrees of freedom is, due to (2.1), given by Nf −nc,
assuming that the constraints are not redundant.

At that, the kinetic energy is defined as

T i = 1
2

ˆ
V i

ρiṙi · ṙidV i, (2.3)

with the mass density ρi and the volume V i of body i, and the global coordinate vector
ri = ri(qi) of a material point P on the body [8]. The generalized forces Qik associated
with the generalized coordinates qik can be determined using the principle of virtual work
which states that for all admissible virtual displacements δqi the total work done δW(c)by
the constraint forces Qi

(c)vanishes [33],

δW(c) =
nb∑
i=1

δW i
(c) =

nb∑
i=1
Qi

(c) · δq
i = 0. (2.4)

Hence, the total work δW done on the system for any admissible virtual displacements
comprises of internal contributions δW(s) and contributions due to external forces δW(e)

12



2.1. A SHORT COURSE ON MULTIBODY DYNAMICS

[4],
δW = −δW(s) + δW(e), (2.5)

which is used to define the generalized forces on each body i via

δW =
nb∑
i=1
Qi · δqi

Qi = ∂W

∂qi
. (2.6)

Thus, for the computation of the right-hand side of equation (2.2), formally, the total
internal and external virtual work δW(s) and δW(e) needs to be determined. Of course,
δW often can be decomposed in independent contributions associated with the individual
components of the multibody system and added up subsequently. For instance, considering
a virtual displacement δri an external force f i(e) acting in the center of gravity of a rigid
body i would yield the contribution

δW i
(e) = f i(e) · δr

i = f i(e) ·
∂ri

∂qi
δqi = Qi

(e) · δq
i (2.7)

to the external virtual work, and consequently

Qi
(e) = f i(e) ·

∂ri

∂qi
(2.8)

as corresponding generalized forces. As another example, the internal contributions in
case of a deformable body j can be derived from an integral formulation of the strain
energy W j

(s)(q
j) which depends on the chosen (tensorial) measure of strain (e.g. Green

strain tensor, Almansi strain tensor) and stress (e.g. Cauchy stress, Second Piola-Kirchhoff
stress).

For a rigid body the set of generalized coordinates qi consists of three translational and
three rotational DOF in 3D (two translational and one rotational DOF in 2D), whereby
the former usually are chosen as the coordinates of its center of gravity, and the latter, for
instance, may be represented either by three independent Euler angles or four dependent
Euler parameters. In case of a deformable object qi typically contains generalized nodal
coordinates of some sort of spatial discretization, e.g. finite element formulations which are
typically based on Ritz’ method with the definition of a spatial interpolation of any field
variable ui(r, t) via

ui(ri, t) ≈
n∑
k=1

N i
k(ri)qik(t) (2.9)

with the nodal values qik and n space-dependent shape functions N i
k(ri), k ∈ {1, ..., n}

defined within the domain of the body. One commonly used way to deal with large dis-
placement and rotation as well as deformation is the so-called “floating frame of reference
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CHAPTER 2. MBD AND HOTINT

formulation” (FFRF). Here a moving (“floating”) reference frame is chosen such that there
is no rigid body motion between the reference frame and the body itself. Rigid body trans-
lation and rotation therefore is defined by the relative motion between this reference frame
and the global fixed coordinate system; the deformation part of motion, on the other hand,
is described by a set of relative generalized coordinates, the so-called “generalized elastic
coordinates”, with respect to the floating frame of reference, e.g. with a finite element in-
terpolation such as (2.9), where ui(ri, t) would be the displacement field, and qik the nodal
displacements, respectively.

Up to now, we have merely touched the very basics of multibody dynamics; going into
detail at this point, however, would go beyond the scope of this thesis. For more detailed
information on kinematics, analytical and numerical techniques (cf. also the subsequent
sections), mechanics of deformable bodies, the FFRF and finite element formulation, the
absolute nodal coordinate formulation (ANCF) [5], and many other issues forming the
fundament of MBD, see, for instance, the classic book of Shabana [4], [8, 9], or [6]. Fur-
thermore, it shall only be mentioned that the next things to look at then would be various
important formulations and concepts to deal with certain elastic components – structural
(finite) elements such as beam, plate, and shell elements – and the respective underlying
mathematical theory as well as numerical implementation, which in fact form an important
part of the current scientific research in this field, as well as other specific issues, such as
contact, friction, or elasticity and plasticity.

2.1.3. Numerical point of view

As already discussed in the previous section, the mathematical problem of MBD in general is
a system of coupled non-linear partial differential equations (PDE) and algebraic equations
due to the constraints. Since it is almost exclusively impossible to find closed analytical
solutions, the only option is an approximate solution by means of numerical (computational)
methods. At that, the sequence of steps that need to be taken in order to numerically solve
a problem such as (2.1) and (2.2) shall be sketched in the following:

2.1.3.1. Spatial discretization and the transformation of the system of PDEs into a
system of ODEs

The general approach for the transformation of space- and time-dependent partial differ-
ential equations to ordinary differential equations with respect to time resembles the idea
of the method of separation of variables. At first, a spatial interpolation for the quantities
under consideration is introduced, typically based on a spatial discretization of the problem
domain (see, for instance, equation (2.9)). Importantly, for continuous field problems, this
represents the transition from a continuous problem, i.e. a problem defined by an infinite
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number of generalized DOFs – which, of course, cannot be dealt with numerically – into a
numerically feasible discrete system described by a finite set of unknowns.

On that basis, the spatial differential operators then can either be written directly in a
discretized form, i.e. substituted by appropriate difference quotients, or the spatial in-
terpolation is inserted into a weak formulation, or some kind of variational or integral
formulation of the system of partial differential equations, where the differential operators
can be applied directly to the chosen interpolation functions. The former is typically used
in finite difference (FD) approaches, the latter is the standard approach in finite element
approaches (FE). At this step, also the boundary conditions of the problem need to be
considered. After that, separation of time and space, in the sense that at any given time t
the spatial dependency can be treated separately, has been accomplished.

Again, the multitude of computational methods for the spatial solution of partial differential
equations, and even the fundamental description of some well-established representatives
such as the FD or FE method, lies beyond the scope of the present work. For the finite
element method, see, for example, the classic books of Bathe [28], Zienkiewicz and Taylor
[29, 30, 31] or [32]; otherwise, the reader is referred to the respective literature.

In either case, any k-th order PDE is transformed into a system of coupled, in general
non-linear k-th order ODEs with respect to time only, in terms of a set q discrete values
representing the quantity under consideration either directly as spatially discrete values or
by means of an interpolation of some sort. The resulting system can either be written in
explicit form,

q(k) = F (q, q(1), ..., q(k−1), t) with q(i) = di

dti
q, (2.10)

or, in the most general case, as implicit system of differential equations:

G(q, q(1), ..., q(k), t) = 0 with q(i) = di

dti
q. (2.11)

In the case of multibody dynamics, equations (2.10) or (2.11) typically are of order 2 and
originate from the discretization of the governing PDE (2.2), where q is a set of generalized
coordinates which needs to comply with the constraint and boundary conditions. More
information on the numerical solution of above two equations follows in Subsection 2.1.3.3.

2.1.3.2. Constraints

Constraint equations in MBD impose additional restrictions on the generalized coordinates
q, reducing the total number of degrees of freedom of the system, and take the form of (in
general nonlinear) algebraic equations (cf. equation (2.1)) in terms of q and t. Typically,
they are used to describe the mutual connection of two (or more) MBS components by
means of joints, or to constrain specific degrees of freedom. Together with the system
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of ODEs (2.10) or (2.11) which corresponds to the governing equation (2.2), they form a
system of so-called “differential algebraic equations” (DAEs).

A very important characteristic of a DAE is its differentiation index which is defined as the
smallest number of differentiations of some of the given equations necessary to get rid of all
algebraic equations, i.e. to reduce the system of DAEs to a system of ODEs. Kinematical
constraint equations which are based on position coordinates usually are of index 3, velocity
level constraints of index 2 and acceleration level constraints of index 1 [8]. In general, the
higher the index of a DAE or constraint equation, the more difficult it is to solve the whole
system of equations by means of numerical methods. The latter issue is detailed in the next
subsection.

It should be noted that there are also alternative ways to account for constraints, apart from
the exact constraint equations (2.1) combined with the method of Lagrange multipliers.
One possibility would be the use of penalty formulations, which – roughly speaking –
lead to a significant increase of the systems potential energy if the respective constraint is
violated. For example, if one wanted to connect two material points r1 and r2 (in absolute
coordinates) of two bodies 1 and 2 by means of a spherical joint, instead of the algebraic
position-level constraint equation

|r1 − r2| = 0 (2.12)

a penalty approach would introduce – in the simplest case – additional forces

f1,2 = ∓k (r1 − r2) = − ∂

∂r1,2

(1
2k (r1 − r2)2

)
= −∂Wconstraint

∂r1,2
(2.13)

on those bodies in the systems governing equations (e.g. on the right-hand side of equa-
tion (2.2)). With the penalty formulation, the constraint is not fulfilled exactly, however,
by adjusting k (compared to the actual stiffnesses in the system) the deviations can be
controlled.

For more information on constraints in MBD, see the respective literature (e.g. [4] and the
corresponding references therein).

2.1.3.3. Time integration

With the spatial discretization of a dynamic problem and the consideration of constraints,
in general a nonlinear system of ODEs (cf. equation (2.10), or (2.11) for the most general
case) and additional algebraic equations (cf. equation (2.1)), i.e. a system of DAEs, with
respect to time remains to be solved, or “integrated”. Hence, this procedure is referred
to as numerical “time integration”, and its basic mathematical principles as well as some
important integration schemes shall be discussed in the following.

Since most numerical time integration schemes are designed for explicit first-order systems,
the first step here – as it can be done for any k-th order differential equation – is the
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transformation of the equations (2.10) and (2.11) into a system of k first-order differential
equations by the introduction of

q(i) = di

dti
q = d

dt
q(i−1) 1 ≤ i ≤ k − 1 (2.14)

as k−1 new variables, and at the same time, additional differential equations [10]. In terms
of the new set of unknowns,

q̃ = {q, q(1), ..., q(k−1)}, (2.15)

the first-order system equivalent to (2.10) is given by

d

dt
q̃ =



q(1)

q(2)

...
q(k−1)

F (q̃, t)


=: F̃ (q, t), (2.16)

and analogously, equation (2.11) can be written as

G̃(q̃, ˙̃q, t) = 0. (2.17)

Since there are no universally applicable methods to solve a general implicit problem such
as given in the latter equation, it is furthermore transformed into a semi-explicit DAE
consisting of a system of explicit ODEs and algebraic equations by the simple variable
substitution z = ˙̃q [11]:

˙̃q = z

0 = G̃(q̃, z, t). (2.18)

Hence, considering equations (2.16) or (2.18), as well as algebraic constraint equations
(2.1), in the most general case the methods for numerical time integration have to deal
with first-order DAEs of the form

q̇ = f(q, z, t)

0 = g(q, z, t), (2.19)

where q are the variables associated with ODEs, and z are the so-called “algebraic variables”
[11].

Keeping the latter result in mind, in the following, the basic theory of time integration
schemes shall be discussed. At first, the example of an explicit ODE with one unknown
shall be considered only. Then, a few remarks are made on the generalization to any number
of unknowns, the computational costs, the direct integration of higher-order systems, and
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finally on the handling of the algebraic parts in equation (2.19), or, the constraint equations,
respectively.

As it was the case with the spatial dependency (see Subsection 2.1.3.1), numerical time
integration again is based on a domain discretization by splitting the time axis in discrete
intervals, the so-called “time steps” of size dt which, hereafter, occasionally just shall be
referred to as “time step” also; starting from any initial time t0, the solution then is cal-
culated successively stepwise. For a time-dependent quantity q(t) governed by the explicit
ordinary differential equation

q̇(t) = f (q(t), t) , (2.20)

at any given time t the exact solution for the next time step can be written as

q(t+ dt) = q(t) +
ˆ t+dt

t
f
(
q(t′), t′

)
dt′, (2.21)

given that q(t) is known [25]. Now, a numerical integration algorithm can be defined by the
approximation of the integral by means of some kind of quadrature rule, with dependence
on dt; numerical time integration thus is always closely related to quadrature rules for
numerical integration, and hence, to function interpolation. The simplest case would be
the explicit Euler method, obtained from the left-sided rectangle method:

q(t+ dt) ≈ q(t) + f (q(t), t) dt. (2.22)

A very important class of algorithms which are based on the known value of the last time
step are called Runge-Kutta methods (RK). For the problem considered above, the general
definition of an s-stage RK method, corresponding to a general approximation scheme for
the integral in equation (2.21) with s intermediate sub-intervals, can be written as [25]

q(t+ dt) = q(t) + bikidt, (2.23)

where ki(t), i ∈ {1, ..., s} are defined by the system of equations

ki(t) = f (q(t) + aijkj(t)dt, t+ cidt) for i, j ∈ {1, ..., s}, (2.24)

and the coefficients can be written in tableaus – also called “Butcher arrays” – in the form

c1 a11 a12 · · · a1s

c2 a21 a22 · · · a2s
...

...
...

cs as1
. . . ass

b1 · · · · · · bs

with 0 ≤ c1 ≤ c2... ≤ cs ≤ 1. (2.25)
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If the matrix consisting of aij is strictly lower triangular, the integration scheme is called
explicit, since in that case ki(t) can be successively evaluated directly from i = 1 to i = s,
corresponding to an effectively decoupled system of equations (2.24). Otherwise, we are
talking about an implicit RK-method, where at any given time t first the coupled, in
general non-linear equations (2.24) have to be solved with respect to ki(t), which is usually
only possible by means of numerical methods, and then the final integration step for the
considered quantity (2.23) can be evaluated. Implicit schemes thus are computationally
more expensive than explicit ones, but on the other hand, they offer higher accuracy and
significantly higher stability.

At that, the accuracy of the interpolation or integral approximation which the integration
method is based on defines the local error in every time step and the global error for the
final solution (which is typically one order lower than the local error), and is limited by the
number of stages s. In case of explicit methods, the maximum consistency order is equal to
s, which means that the global error of the final solution is on the order O(dts); for implicit
methods the maximum consistency order is 2s, respectively.

Note that all of above considerations can also be, and usually are applied to (large) systems
of explicit first-order differential equations, which is done in complete analogy by just
replacing f , q, and ki appropriately by vector quantities f , q, and ki. Of course, the
computational effort increases with s, particularly for implicit methods. It shall be noted
that for a k-th order system in originally N variables the size of the system that actually
has to be solved numerically (2.24) with respect to the variables ki in case of an s-stage
implicit method is nu = s · k ·N , if the first-order transformation (2.15) is used. Since the
resulting equations form usually a non-linear coupled system the numerical solution – using,
for instance, the Newton or modified Newton method (cf. Subsection 2.1.3.4) – may be of
considerable computational costs crucially depending on nu. The effort for a direct solution
via the Newton method, involving the direct inversion of the systems Jacobian using Gauss
elimination, scales with n3

u, whereas an explicit method is only quadratic in nu; hence,
much effort has been expended in the development of efficient methods for the numerical
computation of an approximate solution of linear and non-linear algebraic equations (see
Subsection 2.1.3.4).

As an alternative to the class of RK methods which are, as discussed above, in case of im-
plicit schemes with several stages computationally expensive, since the system size increases
linearly with the number of stages, the so-called “multi-step methods” have been developed.
Multi-step methods use extrapolation and/or interpolation functions based on the solution
of the current step and the known solutions of k previous steps (k-step method) in order to
approximate the integral in (2.21), and can also be either implicit or explicit schemes, de-
pending on whether the solution of the next step is is a part of those interpolation functions,
or not. Importantly, the system size is always given by the original number of unknowns,
independently of the number of steps. As important examples the Adams-Bashforth (ex-
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plicit, consistency order k) or Adams-Moulton (implicit, consistency order k+ 1) formulas,
as well as the backward differentiation formulas (BDF, implicit, consistency order k, stable
for k ≤ 6; most relevant for DAEs) shall be mentioned.

Apart from that, it should be noted that there are also algorithms to integrate higher-order
equations directly without the transformation to a first-order system, and thus without a
multiplication of the system size; the most well-known representative of those would be the
Newmark or HHT (Hilber-Hughes-Taylor) method (both implicit, consistency order 2) for
the direct integration of second-order differential equations.

The main advantage of implicit methods is their high accuracy as well as stability which
is particularly important, for instance, in case of mechanically stiff systems, i.e. systems
including both very low and very high stiffnesses. Because of that, they moreover allow for
a significantly larger time step as compared to explicit time integration, and thus, require
less integration steps in total.

After the discussion of the integration of (systems of) ODEs, some notes on the algebraic
part in equation (2.19) are in order. For that, let us keep in mind the application in MBD,
typically with a governing system of DAEs of index 3 (cf. Subsection 2.1.3.2) originating
from a second-order PDE and some kinematical constraint equations. Of course, a cou-
pled solution of the differential and algebraic part of the governing equations is required,
which can be achieved using one of the following two strategies: One can either attempt
to solve the original system directly, which poses various difficulties to numerical solvers
and is computationally expensive (index-3 solvers, e.g. HHT, or adapted versions of very
stable higher-order implicit integration methods), or perform index reduction by explicit
differentiation of (some of) the algebraic equations first, which results in a system which
is easier to deal with numerically, but may need stabilization techniques to inhibit drift-off
effects due to accumulated small numerical errors [8]. In any case, if there are any alge-
braic equations left, they are solved together with the equations of the integration scheme.
For detailed information on the analysis and numerical methods in context of stiff and/or
differential-algebraic systems see e.g. [11, 12].

Hence, for reasons of stability and consistency, numerical time integration in problems of
MBD – possibly stiff, differential-algebraic, occasionally discontinuous (e.g. due to contact,
friction, switching external forces, control) and nonlinear dynamic systems – is typically
based on very stable, higher-order implicit integration schemes, for example implicit Runge-
Kutta schemes (IRK) such as the RadauII or LobattoIII algorithms, or the HHT integration
scheme.

In respect of the coupling between MBD and SPH it should be pointed out that the govern-
ing equations of MBD can not be solved with explicit methods which, on the other hand,
are standard in the field of molecular dynamics, discrete particle methods, or SPH simu-
lations (cf. Subsection 3.1.3 and 3.2.3). Because of that it is neither possible to directly
include above discussed formulations of MBD in an SPH code, nor the other way around.

20



2.1. A SHORT COURSE ON MULTIBODY DYNAMICS

A thorough discussion on how this inherent problem is dealt with in the coupling approach
developed in the work at hand can be found in Chapter 4, especially Subsection 4.4.

For a detailed summary and further information on time integration methods, stability, and
applicability to the problems in multibody dynamics, see the chapter about time integration
in [9]; cf. also Subsection 2.2.3.

2.1.3.4. Notes on the numerical solution of linear and non-linear algebraic equations

Considering the previous sections and especially the implicit numerical time integration
schemes used in MBD, we eventually end up with a system of algebraic equations in each
time step. In fact, virtually any numerical treatment of any (complex) problem leads to
systems of linear algebraic equations

Ax = b (2.26)

or non-linear algebraic equations of the form

F (x) = 0 (2.27)

at some point, making the latter a topic of crucial importance in the field of numerical
mathematics in theory and application. Therefore, an overview about standard solution
strategies and numerical methods is presented in the following.

Linear systems

For linear systems, either direct or iterative solution methods can be used. The former
yield the exact solution of (2.26) after a certain number of steps if the calculation is done
exactly, and is also often referred to as factorization of A in the product of a lower and an
upper triangular matrix (LU factorization or LU decomposition of a square matrix), which
in turn can be used to compute the solution or the inverse A−1 and is the crucial factor
determining the efficiency of the method. With a given LU decomposition

LU = A (2.28)

the linear equation (2.26) can be solved using

y = Ux (2.29)

and solving successively

Ly = b (2.30)

Ux = y, (2.31)
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where the latter can be done directly and efficiently via backwards substitution because of
the triangular form of the coefficient matrices [39]. The inverse of A is calculated analo-
gously, just by solving the system of linear systems of equations

AX = B (2.32)

for several column vectors x and corresponding right-hand sides b, forming the square
matrix X and B = I, respectively; the solution then, of course, is given by X = A−1. Note
that, for the latter, the LU factorization of A, which typically is the computationally most
expensive part, has to be computed only once.

Examples for important direct methods are [9]

• Gaussian elimination: For general problems; computational effort on the order n3,
where n is the system size; stabilization possible via pivoting.

• Cholesky method: Only for symmetrical problems; computational effort on the order
n3, however by a factor less than Gaussian elimination; stable without pivoting.

• LU factorization: Particularly efficient for unsymmetrical problems with band struc-
ture.

Iterative solvers only approximate the solution of the linear system, yielding higher accuracy
the more number of iterations are carried out. Here, the following methods should be
mentioned [9]:

• Gauß-Seidel method: Based on a fixed-point iteration; single equations of the system
are solved iteratively under the presumption that the other variables are already the
exact solution; typically slow convergence.

• CG-method (conjugate-gradient): For positive, symmetric problems; based on a min-
imization problem, the exact solution of which is given by the exact solution of the
linear equation; starting from some initial value, one moves interatively towards the
solution of this minimization problem based on carefully chosen directions; the exact
solution is reached after a certain maximum number of steps, however, with appro-
priate pre-conditioning (see below) high accuracy can be achieved within significantly
less iterations.

• multigrid-methods (MG): Methods based on several grids with different coarsity; used
for enhancement of global convergence (absolute solution values), as regular itera-
tive procedures generally converge locally (with respect to the differences of solu-
tions at adjacent grid-points) faster than globally; various techniques for adaptive
“mesh refinement” / selection of the grid, error estimators, smoothing routines, pre-
conditioning (see below)...; not efficient due to the overhead for those additional
enhancements / optimization strategies until certain problem sizes are exceeded (typ-
ically used for very large problems).
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As a compromise between the exact direct solution and iterative procedures the highly ef-
ficient approach of factorization and exact solution in combination with approximate min-
imum degree ordering (AMD) for large sparse (symmetric) problems should be mentioned.
AMD ordering, which is based on graph-theoretical considerations and the correspondence
between symmetric matrices and undirected graphs, aims at minimizing the computational
costs of the factorization by minimizing the so-called “fill-in” with an appropriate reordering
of the system matrix [37, 38]. At that, the “fill-in” corresponds to the number of matrix en-
tries which change from zero to a non-zero value during the factorization, therefore crucially
determines the number of floating point operations necessary in the process, and thus, the
computational effort. Algorithms based on direct inversion of sparse systems with AMD
ordering are implemented in high-performance solvers such as “SuperLU” or “PARDISO”.

Note: The condition number of a matrix in the context of a linear system of equations
(2.26) is a measure of the worst-case error propagation, thus of the accuracy that might be
lost on top of the arithmetic errors of the chosen solution method itself. It is defined with
respect to a matrix norm ‖·‖M as

condM (A) =
∥∥∥A−1

∥∥∥
M
‖A‖M (2.33)

with
‖4x‖ / ‖x‖
‖4b‖ / ‖b‖

≤ condM (A), (2.34)

where ‖·‖ is a vector norm which ‖·‖M is compatible to, i.e. ‖Ax‖ ≤ ‖A‖M ‖x‖ [39]. In
other words, condM (A) is an upper limit for the relative error in the solution in relation to
the relative error in the right-hand side. The spectral norm in case of an Hermitian matrix
A, for example, would yield

condM (A) = |λmax| / |λmin| (2.35)

with λmax and λmin the largest and smallest eigenvalue of A, respectively. Pre-conditioning
refers to strategies for transforming the system (2.26) in order to get a better (i.e. lower)
condition number; in a very simplifying way, this can be done, for example, by multiplication
of the system with an appropriate matrix P:

PAx = Pb. (2.36)

A thorough mathematical discussion of this topic can be found, for instance, in [39].

Non-linear systems

Finally, the basis for solvers of non-linear algebraic equations (2.27) includes the methods

• fixed-point iteration,

• Newton and modified Newton method,
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• bisection method,

• secant method, line search / trust region, BFGS (Broyden-Fletcher-Goldfarb-Shannon)
method,...,

the first two of which shall be outlined below.

The fixed-point iteration treats equations of the form

F (x)− x = 0, (2.37)

where starting with a value x0 an iteration is performed via [39]

xi+1 = F (xi) (2.38)

and convergence is at least linear for sufficiently smooth functions, i.e. the error εi associated
with iteration step i decreases as εi+1 < mεi, m ∈ [0, 1].

The Newton method is based on a first-order Taylor expansion of F (x) of equation (2.27)
around a point x0 [39],

F (ξ) = 0 = F (x0) + (ξ − x0) · ∇x ◦ F (x0), (2.39)

= F (x0) + ∂F

∂x

∣∣∣∣
x0

· (ξ − x0)· (2.40)

which can be formally solved with respect to ξ by

ξ = x0 − J−1(x0)F (x0), (2.41)

with the Jacobian matrix J(x0) = ∂F
∂x

∣∣∣
x0
, or iteratively written as

xi+1 = xi − J−1(xi)F (xi) = Φ(xi) (2.42)

with the iteration matrix Φ(x).

It features superlinear, quadratic convergence, i.e. the error decreases as εi+1 < mε2
i , m ∈ R

(with mεi < 1). The main part of the computational costs arise from the computation of
the Jacobian and solution of the linear system (2.39); thus, this is the critical point to be
considered for efficiency and optimization potential. For example, if possible in any way,
the Jacobian for a given system should always be calculated analytically or pre-computed
automatically. The main idea which modified Newton methods are based on is that here
the Jacobian is not updated in every iteration step, but reused as long as convergence still
is regarded as sufficient.

For detailed information, refer to [9] or [39] and other respective literature in (applied)
numerical mathematics.
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2.2. HOTINT

2.2.1. What is HOTINT?

HOTINT is a comprehensive multibody code, written in object-oriented C++ with a graph-
ical user interface (GUI) for MS Windows, allowing to perform simulation, online visualiza-
tion during the process of computation, and analysis of general flexible multibody systems.
It is mainly based on the multibody kernel and an element library, the solver and linear
algebra libraries, along with the graphics and user interface. HOTINT can handle static as
well as dynamic systems comprising rigid bodies and bodies with superimposed small defor-
mations, classical finite elements and a broad range of structural finite elements in various
formulations, any kinds of loads and kinematical constraints or other conditions, offers the
reduction of the system size by a component mode synthesis (CMS), and features adaptive
high-order implicit time integration based on implicit Runge-Kutta methods. From the
mathematical point of view, the numerical core of HOTINT is a high-order implicit solver
for a system of stiff, non-linear and – because of contact, or switching external forces, for
instance – discontinuous DAEs (cf. Subsection 2.1.3).

Detailed information on the features of HOTINT, its development history, the basic struc-
ture, the implemented algorithms, and much more, is given in the manual [34] and respective
literature referenced therein.

2.2.2. Problem definition

Although there is a GUI, access to the whole functionality is only given on source code level.
Problem definition therefore splits into two parts: the creation of a so-called “model file” in
C++ source code, and the specification or adaption of a wide range of various parameters
via input text files. The latter include settings for the solver, such as the range for the
size of the time steps, the integration scheme, or precision or convergence goals, moreover
parameters concerning the data processing / management, visualization, and optionally
definitions of parameters which can be used in the model files.

The process of a problem set-up and simulation thus is given by the following steps:

• Creation of the model file: Here elements can be created and connected, loads created
and applied, sensors (for measurement of quantities) or constraints defined, and initial
or boundary conditions set; in other words, this is the part where the multibody
system is defined.

• Definition of parameters in the input file(s): As already mentioned above, options
and parameters concerning any part of the whole package, are defined here.

• Compiling the model file and linking the corresponding libraries: This includes the
model file in the framework of HOTINT and makes it accessible via the GUI.
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• Running the executable: The GUI of HOTINT is started, where the model can be
selected and the corresponding input files are read in. Now, the simulation can be
started, data can be visualized, evaluated and processed; there is a wide range of
options which can be adapted before and partly even during a simulation. The main
advantage of parameters defined in the input file and used in the model file is that these
values – whatever they may exactly specify – in contrast to hard-coded values can be
easily changed without the need for re-compilation. Furthermore, HOTINT allows
to specify an automatic, predefined change of any of these values in the course of a
parameter variation; the simulation then is be run multiple times with correspondingly
varying parameters.

Again, this was just a very coarse overview; the HOTINT manual [34] includes detailed
insights into the issue of problem set-up and simulation of a multibody system.

2.2.3. Notes on the implementation

Once more, the following can only be a very rough sketch of some features and structure
of HOTINT. Figure 2.2 shows a diagram of the basic structure of HOTINT with the MS
Windows interface; the class and inheritance structure of available elements, which basically
constitute any multibody system in HOTINT is given in Figure 2.3. For a block diagram
of the dynamic solver, based on high-order implicit RK methods and an index-2 treatment
of constraints (cf. Subsection 2.1.3), see Figure 2.1.

For any further details on HOTINT – the core implementation, general structure, data and
class structures, available elements, the static and dynamic solver, and many other issues,
as well as the implemented algorithms and numerical methods for multibody dynamics,
including the time integration strategy – again, refer to [34] and the references given there.
In particular, the publications [36], [40] and, concerning time integration, [35] shall be
mentioned here explicitly.
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Figure 2.1.: Scheme of the dynamic solver. Source: [34].

Figure 2.2.: Structure of the HOTINT multibody system core and Windows interface.
Source: [34].
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Figure 2.3.: The class structure of basic elements in HOTINT. Source: [34].
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3.1. Particle-based methods in fluid mechanics

3.1.1. Introduction

Basically, numerical methods can be divided into two groups – grid-based methods and
meshfree methods. In the field of computational fluid dynamics, today more than 90% of
commercial codes are based on the finite volume method (FVM) which belongs to the class
of grid-based Eulerian methods. Regarding the spatial discretization, in contrast to the
material point of view in case of Lagrangian descriptions which use locally fixed points on
the material itself, Eulerian methods utilize information in spatially fixed points. Thus, a
FV model builds upon a spatially fixed grid which is usually generated beforehand. Despite
the great success of grid-based methods, they suffer from inherent difficulties, especially with
regards to mesh generation when it comes to complex geometries, arbitrarily moving and
deforming boundaries, or free surfaces. Concepts and methods have been developed to deal
with those difficulties, using for example techniques of adaptive remeshing. However, this
usually comes at considerable costs in computational time and mesh quality.

In the case of meshfree methods, on the other hand, the problem is defined or spatially
discretized via arbitrarily distributed, unconnected nodes, depending on the class of problem
– a continuous field problem (e.g. continuum solid and fluid mechanics), or actually a system
consisting of discrete, physical particles (discrete element methods, DEM). When used as
solution approach for the former, the main advantage of meshfree over the well-established
conventional grid-based methods lies at hand – adaptivity, versatility and ease of refinement,
especially significant in those difficult situations mentioned above. Of course, meshfree
methods are no magic cure, and they certainly have their drawbacks as well; in the end, the
exact problem definition, along with the quantities and physical effects under consideration
determine which numerical approach is most suitable – possibly, and particularly in case of
multi-physics problems, a coupled approach which merges the advantages of both grid-based
and meshfree methods suits best.

In the following, the key concept of smoothed particle hydrodynamics (SPH), a meshfree,
particle-based Lagrangian method, and its application in fluid dynamics shall be presented.
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3.1.2. Smoothed particle hydrodynamics (SPH)

In contrast to particle methods dealing with real, discrete physical particles, SPH in fluid
dynamics actually deals with the fluid as a continuum. In other words, the “particles” here
shouldn’t be thought of having a 1:1 correspondence in the real physical world; sheerly
mathematically speaking, they are defined as nodes forming the basis of an unstructured
spatial interpolation for continuous field quantities such as the density, the velocity field or
the pressure field.

The latter – a spatial interpolation based on discretized values of the quantities under
consideration – again serves as the starting point (cf. Subsection 2.1.3.1) for the numerical
solution of the governing equations which, in case of viscous Newtonian fluids, are the full
Navier-Stokes equations. The resulting system of ODEs with respect to time then is solved
by numerical integration, in this case typically by means of an explicit integration scheme.
It should be noted that by the application of SPH the fluid is treated in the sense of direct
numerical simulations (DNS), i.e. no turbulence model is applied; in other words, the model
resolution of the flow, in particular of turbulences, corresponds to and therefore is limited
by the spatial resolution, which, in this case, is the spatial density of SPH particles.

The following subsections shall capture the basic theory of SPH and its application to
general dynamic fluid flows, and are mainly based on the book of Liu [13], which shall
also be cited as first reference for more detailed information; an interesting breakdown on
numerical interpolation in general and the SPH formalism in particular is given by [14].
Originally, the SPH method was developed and at first successfully used in the field of
astrophysics for the investigation of complex gas dynamics involving high-speed collisions,
nuclear reactions and radiation in the ’70s, and later was introduced also in the field of
fluid dynamics by Monaghan [16].

3.1.2.1. Integral representation of a function and its derivatives

The first key operation for the basic SPH formulation is the definition of an integral rep-
resentation of the considered field quantities, such as the velocity or the density field, and
their derivatives. Using Dirac’s delta function δ(r), by definition the identity

ˆ
Ω
f(r′)δ(r − r′) d3r′ =

f(r) r ∈ Ω

0 else
(3.1)

holds, and with a limit representation of the delta function

lim
h→0

W (r, h) = δ(r) (3.2)

30



3.1. PARTICLE-BASED METHODS IN FLUID MECHANICS

we can write [13]

lim
h→0

ˆ
Ω
f(r′)W (r − r′, h) d3r′ =

f(r) r ∈ Ω

0 else
. (3.3)

The integral function approximation of a function f(r), hereafter denoted with a superscript
“*” as f∗(r), then can be defined as

f∗(r) ≈
ˆ

Ω
f(r′)W (r − r′, h) d3r′ for r ∈ Ω, (3.4)

with the so-called “SPH smoothing function”, “smoothing kernel”, or, in short, “kernel”
W (r, h) and the “smoothing length” h [13]. The kernel must be positive,

W (r − r′, h) > 0 for r ∈ Ω, (3.5)

and has to satisfy the normalization condition
ˆ

Ω
W (r − r′, h) d3r′ = 1 for r ∈ Ω, (3.6)

the delta function property (3.2) and the condition of compact support:

W (r − r′, h) = 0 for
∣∣r − r′∣∣ ≥ κh withκ ∈ R+. (3.7)

The latter requirement localizes the integration over the whole problem domain to an
integration over just the support domain of the smoothing kernel; thus, hereafter Ω shall
denote the corresponding support domain.

A first estimate for the accuracy of this approximation can be obtained from a Taylor
expansion of the integrand in (3.4):

f∗(r) ≈
ˆ

Ω

(
f(r) +

(
r′ − r

)
· ∇f |r + p(

(
r′ − r

)2)
)
W (r − r′, h) d3r′. (3.8)

If the kernel is spherically symmetrical, which is the case with all kernel functions of the
form W (r − r′) = W (|r − r′|), the integral over the linear term vanishes, yielding

f∗(r) ≈ f(r) +O(h2) (3.9)

and thus second-order accuracy with respect to the smoothing length.

The representation of spatial derivatives is calculated similarly; using the divergence theo-
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rem, the approximation of the divergence of a vector field v is given by

(∇r · v(r)) ∗ =
ˆ

Ω

(
∇r′ · v(r′)

)
W (r − r′, h) d3r′

=
ˆ

Ω

(
∇r′ ·

(
v(r′)W (r − r′, h)

)
− v(r′) · ∇r′W (r − r′, h)

)
d3r′

=
ˆ
∂Ω
v(r′)W (r − r′, h) · dS −

ˆ
Ω
v(r′) · ∇r′W (r − r′, h) d3r′

= −
ˆ

Ω
v(r′) · ∇r′W (r − r′, h) d3r′, (3.10)

since the surface term vanishes due to the compact support condition (3.7), if the support
domain Ω lies in the interior of the problem domain [13]. Otherwise, i.e. if the support
domain only partially lies in the interior of the problem domain, the surface term – ac-
counting for the boundary conditions – does not vanish and either has to be computed or,
if neglected, accounted for in some other way. The latter is the case in this work and the
utilized SPH implementation; see Subsection 3.1.2.5 for further information on that and a
general discussion of the boundary treatment in SPH.

As it can be seen by the example of equation (3.10) a general characteristic of the method
of SPH is the transmission of any differential operation on a field function to a differential
operation on the smoothing kernel, in analogy to weak form methods where the order of
differential equation effectively is reduced, and thus are the continuity requirements of the
field function approximations.

3.1.2.2. Particle approximation

The second key operation in the SPH formalism is the spatial discretization, which is
done by assigning mass, volume, and density to arbitrarily distributed SPH particles. The
continuous integral approximation (3.4) then is transformed to a discrete summation over
all particles lying within the kernel support domain, known as particle approximation, or
SPH interpolation.

Thus, for a set of N particles with numbers i ∈ {1, ..., N} and positions ri we assign a mass
mi, a density ρi, and consequently a corresponding volume 4Vi = mi/ρi to each of them,
and then define the discretized form of the integral function representations (3.4) and (3.10)
via ˆ

f(r′) d3r′ →
N∑
i=1

f(ri)4Vi =
N∑
i=1

mi

ρi
f(ri) (3.11)

as

f∗(r) ≈
ˆ

Ω
f(r′)W (r − r′, h) d3r′ ≈

N∑
i=1

mi

ρi
f(ri)W (r − ri, h) (3.12)
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and

(∇r · v(r)) ∗ ≈ −
ˆ

Ω
v(r′) · ∇r′W (r − r′, h) d3r′ ≈

N∑
i=1

mi

ρi
v(ri) · ∇riW (r − ri, h), (3.13)

where the summation in fact only runs over the particles within the respective support
domain Ω [13]. For the discretized system equations and the numerical solution procedure,
the two relations above actually only are used for vectors r corresponding to particle posi-
tions, r = rj , j ∈ {1, ..., N}. Hence, the computational evaluation effectively is some kind
of evaluation procedure for pair interaction, an iteration over all neighboring particles i
within the kernel support distance of a given particle j. At that, h is typically chosen such
that approximately 30-100 particles lie within the kernel support domain.

Doing so, we have introduced mass and density of the SPH particles, which makes this
approach particularly suitable and convenient for the application in fluid mechanics, since
there the density is a key field variable. If the SPH particle approximation is applied in
other fields, e.g. solid mechanics, special treatment is required; one possibility would be
to use the SPH approximation to create shape functions and use them for numeric inte-
gration in conventional meshfree methods based on weak (integral) forms of the governing
equations in order to obtain spatially discrete system equations (see, for instance, [15]).
However, this comes with some stability problems, especially in case of negative pressure,
or stress, respectively (“tensile instability”), and might be also problematic since it is usu-
ally required for such methods that the number of sampling points for integration is larger
than the number of field points (particles). For meshfree methods based on weak forms and
application in solid mechanics, the stability may be restored using stabilization terms [13].

3.1.2.3. Notes on the smoothing kernel

As it has been discussed earlier, for any numerical approach for the solution of PDEs it is
necessary to introduce a finite number of unknowns – in whatever way this is done – in
order to break down a continuous field problem into a discrete system of ODEs. The basis
of such a strategy is the link between the artificially introduced finite set of variables and
the actual continuous field variable, which is defined by means of some kind of interpolation
or function approximation. Thus, it is of central importance to quantify the quality of this
function approximation, which is a key point deciding on numerical errors and accuracy,
consistency and stability – or, in short – convergence of the numerical method: for infinitely
many discrete unknowns, e.g. for an infinitely fine spatial discretization, the approximated
solution should match the exact solution.

In FE approaches, convergence requires a certain degree of consistency, and with that,
continuity. The degree of consistency here is associated with the order of polynomial,
which the approximation can reproduce exactly, and it is closely related to the order of
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accuracy it yields in the vicinity of any specified spatial point. In case of the SPH we shall
use exactly this interpretation to classify the quality of the function representation (3.4).

Similarly to (3.8) and (3.9) Taylor expansion in the form of

f(r′) =
∞∑
k=0

1
k!

∂k

∂rn1∂rn2 ...∂rnk

f(r)(r′ − r)kn1n2...nk
(3.14)

with

(r′ − r)kn1n2...nk
=

1 k = 0

(r′n1 − rn1)(r′n2 − rn2)...(r′nk
− rnk

) else
(3.15)

and
n1, n2, ..., nk ∈ {1, 2, 3} (3.16)

can be used to show [13] that n-th order accuracy, i.e.

f(r) = f∗(r) +O(hn), (3.17)

requires for the moments Mk of the kernel to satisfy

M0 = 1

M1 = 0
...

Mn = 0, (3.18)

where Mk is a tensor of rank k with the Cartesian components

Mk
n1n2...ni

=
ˆ

Ω
(r′ − r)kn1n2...nk

W (r − r′) d3r′. (3.19)

Similar relations can be derived for n-th order accuracy of first and second derivatives of
field functions, consequently involving moments of the first and second derivatives of the
smoothing kernel (see [13] for more details), as well as the following additional surface term
conditions:

W (r − r′)|∂Ω = 0 (3.20)

∇r′W (r − r′)|∂Ω = 0 (3.21)

It shall be noted that M0 = 1 is equivalent to the normalization criterion (3.6), and that
M1 = 0 is fulfilled in the already mentioned case of spherical symmetric smoothing functions
of the formW (r−r′) = W (|r′ − r|); moreover, equation (3.20) is equivalent to the condition
of compact support (3.7).

34



3.1. PARTICLE-BASED METHODS IN FLUID MECHANICS

Furthermore, it can be shown that the set of conditions (3.18) to ensure n-th order accuracy
of the integral function approximation also guarantees Cn-consistency (consistency of degree
n), i.e. the exact representation of a polynomial of the order n.

All this, however, in general does not apply to the SPH approximation (3.12) or (3.13) based
on discrete particle summations; irregular particle distributions and the boundary regions
always distort the relations obtained from the continuous integral considerations. One way
to restore Cn consistency for the particle approximation would be to use a polynomial
kernel with different coefficients for each particle; transforming equations (3.18) and (3.19)
into discretized form and inserting the kernel function yields a linear system of algebraic
equations for the unknown coefficients, for every SPH particle. The downside at that clearly
are the computational costs, since it has to be done for every particle in every time step,
and furthermore, in respect of the application in fluid dynamics, it may result in kernel
functions which are partly negative or increase with increasing inter-particle distance, and
hence lead to unphysical effects such as negative densities or negative energy. This issue,
however, needs a more detailed investigation, which again lies beyond the scope of this
thesis. Therefore, and since only one constant kernel function for all SPH particles shall be
used in the following, two popular choices of kernel functions – among the variety of kernels
that have been proposed and employed – shall be presented here concludingly:

Figure 3.1.: The cubic spline kernel (solid line) and its derivative (dashed), with support
radius 2h.
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Figure 3.2.: The spiky kernel (line) and its derivative (dashed), with support radius 2h.

Based on a cubic spline function, the “cubic spline kernel” (see Figure 3.1)

W (r − r′, h) = W (
∣∣r − r′∣∣ , h) = W (R, h) = αd ·


2
3 −R

2 + 1
2R

3 0 ≤ R < 1
1
6(2−R)3 1 ≤ R < 2

0 else
withR =

∣∣r − r′∣∣ /h (3.22)

is introduced [13], with a support radius of 2h. It resembles a Gaussian function with the
advantage of having a narrower compact support, and the Gaussian function in turn – with
the well-known limit representation of the Dirac delta function – represents the kernel suited
best for finding a physical interpretation of the SPH equations according to Monaghan [17].
Up to now, the cubic spline kernel is the most widely used kernel in the SPH literature.

The constant αd is the normalization factor to satisfy condition (3.6), given by

αd = 15
7πh2 for d = 2 (2D)

αd = 3
2πh3 for d = 3 (3D) (3.23)

depending on the dimensionality d of the problem. Note that the derivations up to this
point have only been considering three-dimensional space; more details on the changes for
the two-dimensional case are discussed in Subsection 3.1.2.6.

The second kernel which shall be mentioned here is the so-called “spiky kernel” (cf. Figure
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3.2) [13], defined by

W (r − r′, h) = W (
∣∣r − r′∣∣ , h) = W (R, h) = αd ·


1
6(2−R)3 0 ≤ R < 2

0 else
withR =

∣∣r − r′∣∣ /h (3.24)

with

αd = 15
8πh2 for d = 2 (2D)

αd = 45
32πh3 for d = 3 (3D). (3.25)

Note that the support radius is the same as for the cubic spline kernel (equation 3.22). The
important difference here is that the absolute value of its first derivative is monotonously
increasing as R – or the pairwise particle distance – approaches zero. This property plays
a decisive role concerning the stability in the actual implementation (cf. Section 6.2).

3.1.2.4. The SPH formulation for the Navier-Stokes equations

The governing equations for dynamic fluid flows are derived from the conservation laws of
mass, momentum, and energy. Since SPH is a Langrangian particle-based method, we use
the Navier-Stokes equations for Newtonian fluids in Lagrangian description, the first two
of which are given by the continuity equation,

Dρ

Dt
= −ρ∇ · v, (3.26)

and the momentum equation,

Dv

Dt
= 1
ρ

(−∇p+∇ · T) + f (3.27)

with the viscous stress tensor

T = µ

(
∇ ◦ v + (∇ ◦ v)T − 2

3 (∇ · v) I
)
, (3.28)

the dynamic viscosity µ and an acceleration term f due to an external force field; v denotes
the fluid velocity field, ρ the density field, and p the absolute, thermodynamic pressure
field [13]. As a side note, in the following the latter simply is referred to as “pressure field”
or “pressure”. The operator D

Dt designates the so-called “substantial” or “material time
derivative” in an Lagrangian frame of reference fixed on the body – here, infinitesimal fluid
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volumes – and is connected to the Eulerian description with field variables via

D

Dt
ALagrangian =

(
∂

∂t
+ v · ∇

)
AEulerian (3.29)

for any quantity A [19]. Equations (3.26) and (3.27), together with a scalar equation of
state,

p = p(ρ), (3.30)

form the complete set of equations for the description of the dynamics of Newtonian fluids,
provided that temperature effects, temperature dependence of material properties, heat
conduction and dissipation are neglected, which shall be assumed in the following.

Now, the SPH particle approximation (3.12) and (3.13) is applied to above equations, for
all particles i ∈ {1, ..., N} at their respective positions r1...rn, yielding a discrete set of N
ordinary differential equations with respect to time [13]:

Dρi
Dt

=
N∑
j=1

mjvij · ∇riWij (3.31)

Dvi
Dt

=
N∑
j=1

mj

(
Si
ρ2
i

+ Sj
ρ2
j

)
· ∇riWij + f i (3.32)

with

vij = vi − vj
Wij = W (ri − rj , h)

Si = −piI + Ti,

where {ri,vi, pi,mi, ρi,f i} is complete set of quantities describing SPH particle i. Once
again, for a detailed derivation the reader is referred to [13].

However, two things remain to be pointed out – firstly, the calculation of the density, and
secondly, the inclusion of the viscous terms. For the density calculations, one can either
use the so-called “continuity density approach” given in equation (3.31), or the summation
density approach directly using the SPH particle approximation (3.12) [13]:

ρi =
N∑
j=1

ρj
mj

ρj
Wij =

N∑
j=1

mjWij (3.33)

The main advantages of (3.31) over (3.33) is that the initial density can be set and only
changes in case of relative particle movement and moreover, that it yields more accurate
results in vicinity of the domain boundary; in these regions, the kernel support domain
lies partly outside the problem domain, and thus the summation approach leads to an
unphysical drop in density, and consequently, in pressure. One possibility to reduce the
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errors with the summation approach in boundary regions is an additional normalization of
the sum [13],

ρi =
∑N
j=1mjWij∑N
j=1

mj

ρj
Wij

. (3.34)

However, both the modified summation as well as the continuity approach have the dis-
advantage that contrary to the SPH interpolant (3.33) exact conservation of mass is not
retained [17].

As to the viscosity, there are also various different approaches: Originally, SPH was in-
troduced without viscous terms for problems without or with very low dissipation, corre-
sponding to Eulerian fluids, and, with µ = 0 and T = 0, instead of (3.32) the inviscid SPH
momentum equation

Dvi
Dt

= −
N∑
j=1

mj

(
pi
ρ2
i

+ pj
ρ2
j

)
· ∇riWij + f i. (3.35)

For inclusion of viscosity, one can now either use (3.32) with the SPH particle approximation
of Si, or add an artificial viscosity term Π, many forms of which have been proposed, to
the Euler equation (3.35) [13]:

Dvi
Dt

= −
N∑
j=1

mj

(
pi
ρ2
i

+ pj
ρ2
j

+ Πij

)
· ∇riWij + f i. (3.36)

The probably most widely-used approach is the artificial viscosity introduced by Monaghan
and Gingold [18], given by

Πij =


−αcijµij+βµ2

ij

ρij
rij · vij < 0

0 rij · vij > 0
withµij = hrij · vij

|rij |2 + η2
, (3.37)

where c is the speed of sound, h denotes the smoothing length, α and β are two constant
parameters, η ≈ 0.1h is a factor inserted to prevent numerical divergence, and the notation
Aij = (Ai +Aj)/2 is used for any occurring scalar quantity, which approximates a dynamic
viscosity of µ ≈ αhcρ corresponding to a kinematic viscosity of [16]

ν = µ

ρ
≈ αhc. (3.38)

The latter can be shown by assuming β ≈ 0, η ≈ 0, |rij | ≈ h, rij · vij ≈ hvij and equal
mass m for all particles, and comparing the resulting viscosity term in equation (3.36) to
the viscous term we would get for an incompressible fluid (∇ · v = 0) in the momentum
equation (3.27),

1
ρ
∇ · T = µ

ρ
4v, (3.39)
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written directly in SPH particle approximation (cf. Subsection 3.1.2.2), where

4vi ≈
m

ρ

∑
j

vij4riWij . (3.40)

Note that derivatives of functions are transferred to derivatives of the smoothing kernel in
the SPH formalism, as discussed in Subsection 3.1.2.1. With 4riWij ≈ h−1 |∇riWij | the
above mentioned comparison (of absolute values) finally yields

µ

ρ

1
ρh
|∇riWij |vij ≈

αc

ρ

h2vij
h2 |∇riWij | , (3.41)

and thus
µ ≈ αhcρ. (3.42)

Furthermore, it shall be noted that the condition rij ·vij < 0 in the definition (3.37) of the
artificial viscosity term is satisfied if two SPH particles i and j are approaching each other,
and that it is the SPH equivalent of ∇ · v < 0, which – considering the continuity equation
(3.26) – results in viscous forces only for locally increasing density.

The artificial viscosity approach of equation (3.37) is also implemented in the particle
simulation code LIGGGHTS discussed in Section 3.2; for more information on actually
used parameters cf. Section 6.2. For some further details concerning various SPH matters
see also Subsection 3.2.3.

Concludingly, a short illustrative interpretation of the governing equations for fluid dynam-
ics in the SPH formalism with the continuity density approach shall be given. To this end,
let us consider the spiky kernel given in equation (3.24) for a particle i and a neighboring
particle j. Since it is a spherically symmetrical function depending on the inter-particle
distance only, the gradient is given by

∇riWij = ∇riW (|ri − rj | , h) ∝ ri − rj
|ri − rj |

∂W

∂R
, (3.43)

a vector proportional to rij , the vector of the relative position of particle i with respect
to particle j. From equation (3.31) and the fact, that for the spiky kernel ∂W

∂R < 0 over
the whole support domain, it follows that the density increases, if the relative velocity vij
is oriented “against” the relative particle position; otherwise it decreases. In other words,
when two particles approach each other, both of their densities increase, and the other way
around. Disregarding the viscous forces, similarily, the momentum equation (3.35) yields
a force in direction of rij in case of – roughly speaking – positive pressure, and a force in
the opposite direction for negative pressure (relative to the outer, environmental pressure);
thus, positive pressure trys to keep particles separate, and vice versa. Hence, for locally
higher pressure the particles are pushed apart, resulting in a decrease of their densities and
with that, the associated pressure, and then consequently a decrease of the force, until the
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situation is reversed, the pressure changes sign and the force changes direction, causing the
particles to move back together. It should be noted that this mechanism is a prerequisite
for stability.

3.1.2.5. Boundary conditions

In fluid dynamics there is a variety of possible boundary conditions for the respective field
variables, including the specification of v, the pressure p or the total pressure p+ 1

2ρv
2 at

the boundary (Dirichlet conditions), the pressure gradient ∇p at the boundary (Neumann
condition), or the mass flux ρv through the boundary, in order to account for any kind
of inlet, outlet, or moving wall geometries. In any case, for flows confined by impervious
walls, the “no-penetration” condition

vrel,⊥ = 0 at the boundary, (3.44)

and in case of viscous fluids, additionally the “no-slip” condition

vrel,‖ = 0 at the boundary (3.45)

with the relative velocity vrel,⊥ = ((v − vwall) · n) · n in direction normal to the wall,
i.e. parallel to surface unit normal vector n, and the corresponding parallel component
vrel,‖ = −n× n× (v − vwall), have to be satisfied [19].

The implementation of boundary conditions in SPH still is a matter of current research,
and yet no method for boundary treatment has established itself as standard without com-
promise. As it has already been mentioned in the previous section, inherent difficulties
arise near the boundaries, where the kernel support domain partly lies outside the problem
domain, and thus, the particle approximation of the function interpolation is impaired due
to truncation of the integrals. Typical approaches are based on additional (virtual) SPH
particles, possibly with other properties than the fluid particles, but included in the SPH
summations of the latter, which are placed on the walls, or behind the walls, fixed in space
or free in motion, and constructed such, e.g. by means of mirroring techniques, that the
boundary condition under consideration is satisfied. Other variants include the explicit
computation of surface terms (cf. equation (3.10)), modifications of the kernel in the vicin-
ity of the boundary, or, for enforcement of above no-penetration and no-slip condition, the
direct use of additional force fields based on a measure of distance (e.g. the shortest normal
distance) between the SPH fluid particles and the boundary surface [41].

Hence, the treatment of boundary conditions in the SPH formalism is a difficult issue on
its own, and shall not be investigated here in more detail. As far as the approach to
fluid-structure interaction and the corresponding implementation of boundaries go in this
thesis, the focus lies on the two essential equations (3.44) and (3.45) only, and is discussed
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thoroughly in Chapter 4. More information about recent approaches and the investigation
of the issue of boundary conditions, as well as a wide range of other specific subjects in
fluid dynamics – with and without the SPH methodology – can be found in [42].

3.1.2.6. 2D versus 3D

The transition from 3D to 2D is performed considering a quasi-twodimensional 3D-case in
the xy-layer, where for all field quantities q(r, t) = q(x, y, z, t) at any given point (x, y) and
time t the conditions

q(x, y, z, t) = q(x, y, 0, t) ∀z ∈ R (3.46)

and, of course,
vz ≡ 0 (3.47)

hold, and the considered geometrical domain is assumed to have infinite extension in z-
direction, resulting in an invariance of the problem under translation in z-direction. With
that, instead of an infinitesimal Cartesian volume element dxdydz we can equivalently
consider volume elements dxdy · z0 with an arbitrarily chosen depth z0, and formulate the
governing equations in analogy to 3D based on the conservation principles. Correspondingly,
a volume integral is effectively transformed to a plane surface integral times the depth unit
z0 ˆ

f(r) dV → z0

ˆ
f(x, y) dxdy = z0

ˆ
f(x, y) dA, (3.48)

and, after division of any integral relations by z0 in order to eliminate the z0-dependency the
equations formally remain unchanged except for surface instead of volume integration and
independence of z, provided that all “integral” or extensive quantities are defined relative
to a unit depth. For example, in the 3D case, the mass, as such a quantity,

m =
ˆ
ρ dV, (3.49)

is transformed to a mass m2D per depth unit,

m2D = m

z0
=
ˆ
ρ dA, (3.50)

whereas the density, on the other hand, stays unchanged as an intensive, i.e. scale-invariant
system property.

Of course, the SPH interpolation (3.4) now needs to be built upon the two-dimensional Dirac
delta function, since a spatial interpolation for two coordinates is required. Consequently,
all interpolation integrals become plane surface integrals, with a compact support domain in
form of a circle, and, importantly, the normalization factor for a given smoothing kernel to
satisfy (3.6), or the corresponding condition in 2D, changes depending on the dimensionality
(cf. equations (3.23) and (3.25)). For the integral representation of the derivative of a
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function (cf. (3.10)), the divergence theorem for two dimensions is used, and again, the
boundary term vanishes due to the compact support condition, if the support domain lies
inside the problem domain. Finally, the particle approximation is realized by the use of
discrete surface elements 4Ai associated with every particle,

ˆ
f(r) dA →

N∑
i=1

f(ri)4Ai =
N∑
i=1

mi/z0
ρi

f(ri) =
N∑
i=1

m2D
i

ρi
f(ri). (3.51)

In summary, all of the derivations in above subsections can be made in complete analogy
for the 2-dimensional case, and hence shall not be repeated here; furthermore, keeping in
mind that all extensive quantities are related to the unit depth, the governing equations
in SPH particle approximation (3.31) and (3.32) for 2D are – except for the missing (or
trivial) z-component – formally identical to the 3D case.

3.1.3. Numerical point of view

Numerically, the problem is very much different than the situation in multibody dynamics
(cf. Subsection 2.1.3). Equations (3.31) and (3.32) can be integrated directly by means of
explicit methods, where the application and implementation of SPH is quite analogous to
implementations of simulators for problems of many-particle physics with a short-ranged
pair potential. In fact, for an arbitrarily chosen SPH particle i the right-hand side of (3.31)
and (3.32) merely consists of pair-wise contributions of particle i and any other particle
which lies within the kernel support domain around particle i. Hence, the kernel plays
the role of a pair potential, and the radius of the compact support corresponds to its cut-
off radius, i.e. the inter-particle distance at which (and from which on) the potential or
interaction force vanishes. Thus, the main task – except for the more or less straight-
forward time integration and analysis of the simulation data – is an efficient calculation of
the pair interaction. Using brute-force, i.e. moving through all possible pairs of all particles
in every time step, results in a computational effort proportional to N2, where N is the
total number of particles, which is not feasible for large systems. One possibility to reduce
the effort to the order N would be the so-called “cell method” of MD [27]. Here, a regular
grid is created with cell sizes corresonding to the cut-off (or, in case of SPH, the kernel
support radius) and in every time step all particles are hashed on that grid (which itself is
a operation linear in N). Consequently, for any given particle i located in a certain cell,
only the other particles in that cell and in the adjacent cells need to be considered. More
sophisticated approaches, e.g. Verlet lists (neighbor lists), also take into account the current
particle velocities, for instance, in order to estimate possible interaction partners for the
next time step based on the actual particle configuration and to make the pair evaluation
procedure even more efficient, resulting in a computational effort still on the order N , of
course, but with a smaller proportionality factor.
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3.2. LIGGGHTS

3.2.1. What is LIGGGHTS?

LIGGGHTS stands for LAMMPS Improved for General Granular and Granular Heat Trans-
fer Simulations. The latter, LAMMPS, short for Large-scale Atomic/Molecular Massively
Parallel Simulator, is a classical molecular dynamics code widely used in the field of molec-
ular dynamics and for approaches based on discrete element methods (DEM) that models
an ensemble of particles in a liquid, solid, or gaseous state, simulating atomic, polymeric,
biological, metallic, granular, and coarse-grained systems in 2D or 3D using a variety of
force fields and boundary conditions. It is designed for parallel computers allowing the
investigation of systems consisting of a few up to billions of particles. However, it does not
offer a GUI or any post-processing, analysis of the simulation data, or visualization [24].

The current version is written in C++ and utilizes the standardized message-passing system
MPI (“message-passing interface”, see [50, 51], or Subsection 5.1) for parallelization; it is a
freely-available open-source code, distributed under the terms of the GNU Public License
by Sandia National Labs, and was originally developed under a US Department of Energy
CRADA (Cooperative Research and Development Agreement) between several Department
of Energy laboratories and companies [24].

Now, LIGGGHTS, itself an open-source project, aims to improve those capabilities with
the goal of application in the industry, and adds, amongst other features, import and
handling of complex wall geometries from CAD, a moving mesh feature to account for
moving geometry, additional inclusion of optional cohesional and rolling friction forces, as
well as heat conduction between particles in contact, and, importantly, an implementation
of the SPH formalism (cf. Subsection 3.1.2) [22].

Further information on the capabilities of LAMMPS and LIGGGHTS can be found in the
LIGGGHTS documentation [23].

3.2.2. Problem definition

With LIGGGHTS the simulation set-up and problem definition is done entirely via a so-
called “input script”. A broad range of LAMMPS and LIGGGHTS commands is available
for the specification of

• any parameters concerning the problem (mass, density, initial conditions,...) and the
solver (e.g. size of time step, total number of time steps,...),

• the problem domain and particle arrangement, as well as simple (and complex static)
wall definitions,

• the type of integration to be used, the algorithms for pair evaluation and neighbor
list builds, the way thermodynamic information is evaluated and processed,
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• additional filters, temperature control, smoothing algorithms,... to be applied in every
time step,

• and, finally, the output style and configuration, as well as logging options.

Again, it would go beyond the scope of this thesis to go more into detail here; see [23] for
a complete reference over the functionality, as well as the how-to of installing LIGGGHTS,
setting-up, running and evaluating a simulation.

3.2.3. Notes on the implementation

In the most general sense, LAMMPS integrates Newton’s equations of motion for collections
of atoms, molecules, or macroscopic particles that interact via short- or long-range forces
with a variety of initial and/or boundary conditions, using explicit Velocity-Verlet integra-
tion (or optionally the rRESPA algorithm which consists of a series of Velocity-Verlet-like
algorithms [21]).

The Velocity-Verlet algorithm is an explicit symplectic integrator well known in the field of
molecular dynamics (MD); it has the convergence order 2, and is defined by

ri(t+ dt) = ri(t) + vi(t)dt

vi(t+ dt) = vi(t) + 1
2mi

F i(R(t)) + 1
2mi

F i(R(t+ dt))dt

with i ∈ {= 1, ..., N}

and R(t) = {r1(t), r2(t), ...rN (t)} (3.52)

where ri(t), vi(t), andmi is the position, velocity and mass of particle i, N the total number
of particles, and dt the time step; the force F i(R(t)) on particle i is assumed to depend
merely on the particle positions [26]. Note that the computation of the forces, which is the
most time-consuming part, has to be done only once per time-step.

For computational efficiency neighbor lists are used to keep track of nearby particles (see
also Subsection 3.1.3) which are optimized for systems with particles that are repulsive at
short distances, i.e. systems with limited local density of particles. On parallel machines,
LAMMPS uses spatial decomposition techniques to partition the simulation domain into
small 3D subdomains, one of which is assigned to each process. At that, a process is
associated with one or several CPU cores together with a memory space. Communication
between the processes is done via MPI routines (see [50, 51]), where the communicated
data consists of information about so-called “ghost atoms” which are all atoms that border
their subdomain within the range of interaction. In other words, the only thing one process
needs to know about the rest of the system is the data of particles which lie outside its
own subdomain, but still within range of interaction and thus yield contributions to the
computation of the interaction terms for the local particles. The highest efficiency in a
parallel sense is reached for systems the particles of which fill a 3D rectangular box with
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roughly uniform density; of course, for small systems, i.e. in case of small numbers of
particles, there is a limit for the number of processes, at which efficiency starts to decrease
due to communication overhead. Technical details of the algorithms used in LAMMPS
can be found in [20, 21]; see also Section 5.5 for additional information concerning the
parallelization.

In conclusion, since LIGGGHTS is used here for the SPH simulation, some notes on the cor-
responding implementation are in order. The SPH formalism is implemented in LIGGGHTS
for viscous fluids with an artificial viscosity according to Monaghan (cf. equation (3.37)
and (3.36)), but with a constant value of the speed of sound defined in the input script,
and uses Tait’s equation of state [16],

p(ρ) = c2ρ0
γ

((
ρ

ρ0

)γ
− 1

)
, (3.53)

where ρ0 designates the nominal density, c is the speed of sound, and γ the polytropic con-
stant which is typically chosen as 7. This equation establishes a stiff relation between the
density and the pressure, i.e. small variations in density result in large changes in pressure,
and is a common choice for the SPH simulation of weakly compressible fluids. Hereby, the
parameter c needs to be chosen carefully – taking the real value for nearly incompressible
fluids, such as water, comes at the high prize of an extremely small time step in the inte-
gration procedure to retain stability, taking a value too small results in comparatively large
density fluctuations. In practise, the speed of sound is defined as approximately ten times
the maximum bulk flow velocity vbulk, for which the density variations 4ρ = |ρ− ρ0| can
be estimated according to Monaghan [16] by

4ρ
ρ0
≈
(
vbulk
c

)2
≈ 1%. (3.54)

Hence, almost incompressible fluids are modelled by orders of magnitude more compressible
than they actually are, but still rather incompressible, allowing for a larger time step and,
therefore, reducing the computational effort.

As to the smoothing function, originally only the cubic spline kernel (see equation (3.22))
in 3D was implemented in LIGGGHTS; additionally I implemented the cubic spline kernel
normalized for 2D simulations, as well as the spiky kernel for 2D and 3D (cf. equation
(3.24)). In any case, the simplest approach with one kernel function with a predefined
smoothing length for all particles is used (cf. Subsection 3.1.2.3).

The density is calculated via the continuity approach (3.31), using the explicit Euler in-
tegration (cf. (2.22)). Since the pressure field in SPH generally is subject to considerable
oscillations, an optional filter can be additionally applied to the density field to smooth
out those oscillations. The algorithm implemented is called “Shepard filter”, and consists
of nothing else than the application of the modified density approach (cf. equation (3.34))
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once in every n time steps, where n can be set arbitrarily via the input script.

Finally, one thing concerning the use of the Velocity-Verlet integrator for the momentum
equations (3.36) should be noted: The right-hand side actually also depends on the particle
velocities due to the viscous terms, whereas the algorithm (3.52) considers forces depending
on the particle positions only. Thus, every recalulation of F (R(t),V (t)) = F (t) is based
on the updated particle positions, however, on the velocities from one substep before,

ri(t+ dt) = ri(t) + vi(t)dt

ṽi(t+ dt) = vi(t) + 1
2mi

F i(t)dt

F i(t+ dt) = F i(R(t+ dt), Ṽ (t+ dt))

vi(t) = ṽi(t+ dt) + 1
2mi

F i(t+ dt)dt

with i ∈ {1, ..., N} and

R(t) = {r1(t), r2(t), ...rN (t)}

Ṽ (t) = {ṽ1(t), ṽ2(t), ...ṽN (t)}, (3.55)

which probably leads to a reduced order of convergence of the integration scheme. Nev-
ertheless this does not impair the global solution considerably, since the viscous terms are
typically much smaller than the pressure-related terms, and the density is integrated with
a convergence order of only one anyways.

For more detailed information concerning the implementation, the reader is referred to [22],
the LIGGHTS documentation [23], and the source code which is also freely available at [22].
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4. Fluid-Structure Interaction – Direct
coupling of flexible MBD and SPH

4.1. Coupling concept – the main idea

4.1.1. Introduction

As it has already been pointed out in the introduction (cf. Chapter 1), the central subject of
this thesis is an approach to FSI by means of direct coupling of flexible MBD with SPH for
general dynamic fluid flows by coupling of HOTINT and LIGGGHTS, with the objective
of combining the strengths of both – a highly effective treatment of complex multibody
systems on the one hand, and an efficient and flexible model for the fluid simulation on
the other hand. The desired key features then are stability and consistency, flexibility with
respect to arbitrary geometry as well as geometrical and possibly topological changes, and
performance and efficiency.

In general, any coupled approach to FSI inherently consists of two more or less separate
and different parts of implementation, depending on the models used for the description of
the fluid and the structural parts. The choice of these models is restricted by their mutual
compatibility, effectively from a mathematical point of view. Moreover, an implementation
can be classified either as monolithic or non-monolithic design, according to whether it
is one single application or consists of two separate codes, possibly even on two separate
machines. In any case, the first and crucial step to be taken on the way to a coupled
approach to these, or in general, all multiphysics problems, is the definition of an interface.

The interface comprises the data structure as well as routines for data exchange, where the
former is defined by the mathematically neccessary information for the connection of the
models, i.e. all the data to be exchanged mutually between the models in order to obtain a
well-posed problem situation on either side, and the latter are determined by the design of
the implementation. In case of similar models for the fluid and the solid part, e.g. a particle
method and a lattice-type model, respectively, the coupling can be achieved relatively easily,
from both the mathematical as well as the implementation point of view, particularly, if
the design is monolithic, and thus, the data exchange and communication can be done
directly within the same process on the main memory. For a non-monolithic design, the
data exchange is more difficult, especially when working on two different machines with the
need for a dedicated system for communication.

48



4.1. COUPLING CONCEPT – THE MAIN IDEA

4.1.2. A non-monolithic approach via TCP/IP

Considering the above, the approach at hand is based on very different models for the
fluid and structural side, respectively, and inherently non-monolithic, since LIGGGHTS
is a fully-parallel 64-bit application for UNIX/LINUX systems only, and the employed
version of HOTINT is a 32-bit multi-threaded software package running exclusively under
MS Windows.

The main steps for the realization of this approach are

• the development of a basic idea for a possible coupling solution under the given
circumstances,

• the development of a suitable and flexible interaction model / a contact formalism
between the multibody formulations and the SPH fluid particles,

• the definition of an interface (data and data exchange),

• the implementation of communication between HOTINT and LIGGGHTS,

• the implementation of the coupling formalism on both sides,

• and, last but not least, synchronization.

The main idea for the coupling solution is based on the introduction of a client/server rela-
tion between the two sides, assigning HOTINT the server and LIGGGHTS the client role;
TCP/IPv4 shall be utilized to realize the data transfer and communication, providing a
maximum of flexibility and independence. The reason why the roles are assigned this and
not the other way around is not to far to seek – contrary to LIGGGHTS, HOTINT offers
comprehensive possibilities for data (post-)processing, evaluation and real-time visualiza-
tion, along with a GUI, and thus qualifies to be the central application which the complete
management and control of the whole system is residing with.

At that, the coupling shall be accomplished effectively within the time stepping: HOTINT
calculates one time step and updates positions, velocities and deformation of the com-
ponents of the multibody system accounting for additional forces due to the fluid, then
exchanges this information with LIGGGHTS, which in turn computes the next time step
in the fluid simulation on that basis, recalculates the forces on the bodies, and communi-
cates them with HOTINT, completing the necessary data for the computation of the next
multibody time step, and so on.

Concludingly, the tasks of either side can be summarized as the following:

Server / HOTINT MBD:

• calculation of MBD with additional forces due to the fluid

• coordination of the simulation and communication, control of LIGGGHTS
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• problem set-up for both sides

• data management and data processing, visualization

Client / LIGGGHTS SPH:

• fluid simulation with given, arbitrarily moving/deforming boundaries (MPI parallel)

• communication with the server

Based on the interaction formalism between SPH particles and MBD which is discussed
thoroughly in the Sections 4.2 and 4.3, an interface and above outlined synchronization
strategy are defined (see Section 4.4); Chapter 5 details the complete implementation.

4.2. The contact formalism – SPH-wall interaction

The objective of this section is the development of an interaction formalism between the
SPH particles and the solid structures in the multibody system. In other words, we need
a way to model the contact between the fluid and the solid, to describe the forces exerted
on the structural parts by the fluid, while accounting for the essential boundary conditions
(3.44) and (3.45) for a viscous fluid interacting with any solid, impervious structure (cf.
Subsection 3.1.2.5).

From a strictly physical point of view, the interaction between a fluid and a boundary,
defined by the surface of any solid body, would be described by a quantum-mechanical model
on an atomic scale. In a quasi-classical, still atomic or molecular picture the quantum-
mechanical description is replaced by the introduction of classical interaction forces or
potentials, e.g. based on electrostatic dipole-dipole interaction, between the molecules of
fluid and solid, respectively. We, however, regard both the fluid and the solid as idealized
continua in a macroscopic description, spatially discretized to allow numerical treatment.
Nevertheless, considering the above mentioned actual mechanism of interaction, it seems
reasonable, not to say, natural, to base the contact between the fluid in SPH formulation
and the components of the multibody system on force fields, or, to be exact, on force field
densities defined over the surface of the solid structures.

Analogous to the approach in [43], two short-ranged force field surface densities, f rep(r, r′)
for the generation of repulsive forces and enforcement of the no-penetration condition (3.44),
and fvisc(r,v, r′,v′) to account for viscous forces, or, in other words, wall friction, and the
corresponding no-slip boundary condition (3.45) shall be introduced. According to the
sketch in Figure 4.1, the forces F rep

i and F visc
i on an SPH particle i at ri with velocity

vi in the vicinity of a solid body and its surface denoted as S are given by the surface
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Figure 4.1.: Interaction between the surface S of a solid structure and SPH particle i at
position ri.

convolution integrals

F rep
i =

ˆ
S
f rep(ri, r′) dS′

F visc
i =

ˆ
S
fvisc(ri,vi, r′,v′) dS′, (4.1)

with [43]

f rep(ri, r′) = f rep(rrel) =

k
(2h−rrel)4−(2h−r0)2(2h−rrel)2

4h2r0(4h−r0)
rrel
rrel

0 ≤ rrel ≤ 2h

0 rrel > 2h

fvisc(ri,vi, r′,v′) = fvisc(ri, r′,vrel) =

−
t
2vrel

1
α4riW (r′, ri, h) 0 ≤ rrel ≤ 2h

0 rrel > 2h
rrel = ri − r′

rrel = |rrel|

vrel = vi − v′. (4.2)

At that, r′ and v′ denote the position and velocity vector of a local point on the body surface
S; the cut-off, i.e. the interaction range of the force field densities is given by 2h, k and t
are the respective scaling parameters for the repulsive and the viscous force, and 0 < r0 ≤
2h is the equilibrium distance for the former. W (r′, ri, h) represents an SPH smoothing
kernel (cf. Subsection 3.1.2.3, equations (3.22) and (3.24)), and α is another scaling factor
(for re-normalization of the kernel). For better illustration, a sketch of f rep(r, r′) and
fvisc(r,v, r′,v′) based on the spiky kernel (3.24) is given in Figure 4.2.

It shall be noted that the cut-off 2h neither necessarily has to be identical for the repulsive
and the viscous contribution, nor equal to the radius of the kernel support domain of
the SPH simulation itself, however, it is reasonable to choose a value in the same order of
magnitude; as explained below, the parallel between fvisc and the SPH viscosity calculation

51



CHAPTER 4. FLUID-STRUCTURE INTERACTION – DIRECT COUPLING OF
FLEXIBLE MBD AND SPH

Figure 4.2.: Absolute values of the SPH-wall interaction force densities f rep(rrel) =
|f rep(rrel)| (blue line) and fvisc(rrel) =

∣∣∣fvisc(rrel,vrel)∣∣∣ (red line) with
|vrel| = 1, the spiky kernel (3.24) and the parameters k = t = 1, r0 = 1,
α = 1/αd (cf. equation (3.25)).

for the fluid suggests to actually use equal values here.

The repulsive force is a central force acting along the line between a local point on the
surface and the SPH particle position, consisting of a 4-th order repulsion term to keep
SPH fluid particles from penetrating the boundary, and a 2-nd order attractive term to
model adhesive effects; for r0 = 2h the adhesive term vanishes. Of course, there is a
wide range of possible and reasonable choices for the repulsive force densities, such as a
Lennard-Jones like potential

f rep(rrel) = k

((
r0
rrel

)p1

−
(
r0
rrel

)p2) rrel
rrel

, (4.3)

well-known from intermolecular interaction with typical values p1 = 4, p2 = 2 or p1 =
12, p2 = 6 and, for instance, suggested and implemented in [16], which corresponds exactly
to above discussed semi-classical perspective on an atomic level.

The viscous force, on the other hand, is directed against the relative velocity between
the SPH particles and the local surface points for 4riW (r′, ri, h) > 0, which clearly ap-
proximates the no-slip condition (3.45). With the proportionality to the Laplacian of the
smoothing kernel and the velocity difference it resembles the SPH approximation of the
viscous term – the real one, not the artificial viscosity – in case of incompressible fluids
which in turn is proportional to the Laplacian of the velocity field (note that derivatives
of functions are transferred to derivatives of the smoothing kernel in the SPH formalism,
as it has been discussed in Subsection 3.1.2.1; cf. also Subsection 3.1.2.4). Since the in-
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tegration has to be performed numerically, i.e. based on certain discrete sampling points
on the boundary (cf. Section 4.3), one could actually identify those boundary points as
another type of SPH particles and include their contribution to the viscous force terms in
the original SPH summation (cf. equations (3.32) or (3.35),(3.36)); this would then be in
complete analogy with the boundary treatment via fixed boundary particles proposed by
Monaghan [16].

Now, equations (4.1) and (4.2) define the forces on any SPH particle due to interaction
with the surface S of any body in contact with the fluid; of course, the corresponding
counterforce reacts upon that body according to Newton’s second law. More details on the
balance of forces and moments are given in the next section.

The approach via convolution integrals lies somewhere inbetween a boundary particle treat-
ment, i.e. another type of SPH particles placed and fixed along the boundaries and included
in all SPH summations, and a force-field approach based on some kind of measure of dis-
tance between the SPH fluid particles and the boundaries. However, there are critical
advantages over both of them:

In the first case, a known problem is boundary penetration; this can happen because of
“holes” in the repulsive potential wall (created by the boundary particles) due to the short
interaction range. Even though with the approach at hand the integrals have to be com-
puted numerically and thus are reduced to sampling-point-wise contributions along the
boundary (see Section 4.3) – which, from this point of view, makes it very similar to the
method of boundary particles – refinement here, in contrast to the latter (consider the fixed
boundary particles), comes into play very naturally, by just refining the discrete boundary
elements, or using a higher-order integration scheme (cf. Section 4.3).

In the second case, the forces between the fluid particles and the boundaries depend on
a measure of relative distance d, for example, the minimum normal distance of a given
particle to the surface, or in the discretized case, the surface elements, respectively. This
comes with two problems – firstly, in case of complex geometries the computation of d
might be difficult, and secondly, d usually is only C0-continuous, and so is the force field.
However, at any edge or vertex – and there are a lot of those for geometrically discretized
surfaces, e.g. by a finite element triangular mesh in 3D or connected line segments in 2D,
which have to be used for almost any geometry (and body) – the derivative of d and the
force field are discontinuous, resulting in artifacts such as the “cooking” of SPH particles
in concave regions (i.e. instable or jittery motion of the particles) and reducing the general
stability of the simulation [43]. Of course, by weighting of the distances to adjacent surface
elements or some other smoothening techniques, these effects can be reduced, but the iso-
lines of the force field are still bulgy in the vicinity of vertices. The convolution integrals
used here, on the other hand, yield smooth force iso-lines everywhere, provided that the
numerical integration is performed sufficiently accurate; see Figure 4.3 for illustration.
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Figure 4.3.: (a) Iso-surfaces of the Euclidean distance field of a piecewise linear curve
(blue) with discontinuous first derivatives near concavities. (b) Weighted
sums yield smooth iso-surfaces with bulges. (c) Normalization does not
remove the artifact. (d) Convolution yields bulge-free smooth iso-surfaces.
Source: [43].

4.3. Discretized force calculation and mechanical equilibrium

Depending on the spatial discretization used in the model for the solid components of the
MBS, the surface of those components is also discretized, or analytically defined (e.g. in
case of structural finite elements), and, in any case, can be represented by some kind of
surface mesh. In case of two spatial dimensions, an arbitrary surface can be defined as a
sequence of connected line elements, for 3D we usually have a surface mesh consisting of
triangular and/or quadrilateral elements. In the following, we shall focus on the 2D-case,
since this also was the one actually implemented within the scope of this master thesis, and
moreover, the 3D-case can be treated quite similarly.

For a 2D surface S discretized by NS line segments, a numerical integration scheme for the
computation of a surface integral (4.1) in general (see also [39]) is based on sampling points
rSj,1, ...r

S
j,Mj

along the line and corresponding velocities vSj,1, ...vSj,Mj
for each line element j

of length lj (see Figure 4.4) with respective weights w1, ...wMj , and is given by

F rep
i ≈

NS∑
j=1

1
2 lj

Mj∑
k=1

wkf
rep(ri, rSj,k)

F visc
i ≈

NS∑
j=1

1
2 lj

Mj∑
k=1

wkf
visc(ri,vi, rSj,k,vSj,k). (4.4)

Note that the line segments are defined via their two vertices, denoted as rSj,A and rSj,B,
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Figure 4.4.: Sketch of the 2D surface discretization via connected line segments j = 1...NS

and the numerical surface integration of the SPH-wall interaction based on
local sampling points rSj,k.

and the corresponding velocities vSj,A and vSj,B for the j-th element; based on that data,
the sampling points rSj,k and velocities vSj,k are calculated according to the chosen integra-
tion scheme, using linear spatial interpolation for both with an interpolation factor gSj,k
normalized by the length of the corresponding line element:

rSj,k = rSj,A +
(
rSj,B − rSj,A

)
gSj,k = (1− gSj,k)rSj,A + gSj,kr

S
j,B

vSj,k = vSj,A +
(
vSj,B − vSj,A

)
gSj,k = (1− gSj,k)vSj,A + gSj,kv

S
j,B (4.5)

with

gSj,k =

∣∣∣rSj,k − rSj,A∣∣∣∣∣∣rSj,B − rSj,A∣∣∣ ∈ [0, 1]. (4.6)

As it has already been mentioned in the previous section, due to the short-ranged force
fields (range 2h, cf. equation (4.2)) and the discrete point-wise numerical evaluation of the
surface convolution integrals (4.1), the distances d between the local sampling points must
be sufficiently small. The maximum distance is given by dmax = 4h, however, depending on
the characteristics of the force fields, it typically should be significantly lower. Otherwise,
the boundary would contain “holes” between any pair of sampling points with d > dmax,
since an SPH particle passing, for instance, exactly midways between such pairs is not
within interaction range anymore, and thus is not subject to any kind of force (or just a
very small force) due to the boundary interaction; we could say that, in such cases, the
particle does not “see” any boundary, and hence, the no-penetration condition (3.44) is
violated.

For a given line segment with length l, consequently, at least Np = l/dmax local points
are necessary, which can be accomplished either by using an integration scheme based
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k gSj,k wk

1 1
2(1−

√
3/5) 5/9

2 1
2 8/9

3 1
2(1 +

√
3/5) 5/9

Table 4.1.: Sampling points and weights for 3-point Legendre-Gauss quadrature [44] over
the interval [0, 1].

Figure 4.5.: Iso-lines of |F rep
i | according to equation (4.4) and (4.2) with parameters k =

1000 and r0 = 2h around a line element (red dashed) using 3-point Legendre-
Gauss quadrature, with various length/cut-off ratios l/(2h) = 4.

on Nint > Np sampling points, or, if Nint < Np, by appropriate mesh-refinement, i.e.
here, by subdivision of the considered line segment in subelements with lengths lsub <
dmaxNint. Using adaptive mesh-refinement is preferable to the application of different
numerical integration schemes, or, different orders of one specific integration algorithm on
the un-refined mesh, since the refinement can be performed easily locally to an arbitrary
level of resolution, and all elements are treated equally from a numerical point of view. To
get an idea of an appropriate refinement resolution in case of a 3-point Legendre-Gauss
quadrature (Nint = 3) for numerical computation of the line integrals (cf. Table 4.1),
Figures 4.5 to 4.8 show the force field iso-lines of |F rep

i | according to equation (4.4)) around
one line element with various length/cut-off ratios l/(2h).

Taking above parameters and integration scheme, in order to get a closed force iso-line
around the line element with at least 20% of the maximum repulsive force, i.e. here 0.2k =
200, apparently the length of the line element should be approximately equal to the force
field range,

l ≈ 2h, (4.7)

which is by a factor 6 smaller than above mentioned maximum length lsub. It is important
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Figure 4.6.: Iso-lines of |F rep
i | according to equation (4.4) and (4.2) with parameters k =

1000 and r0 = 2h around a line element (red dashed) using 3-point Legendre-
Gauss quadrature, with various length/cut-off ratios l/(2h) = 2.

Figure 4.7.: Iso-lines of |F rep
i | according to equation (4.4) and (4.2) with parameters k =

1000 and r0 = 2h around a line element (red dashed) using 3-point Legendre-
Gauss quadrature, with various length/cut-off ratios l/(2h) = 4/3.
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Figure 4.8.: Iso-lines of |F rep
i | according to equation (4.4) and (4.2) with parameters k =

1000 and r0 = 2h around a line element (red dashed) using 3-point Legendre-
Gauss quadrature, with various length/cut-off ratios l/(2h) = 1.

to note that only closed iso-lines represent a closed surface (without “holes”), and thus are
the critical point to look at in order to get impervious boundaries. Consequently, the force
scaling factor k must be chosen sufficiently high, and the lengths of the line segments need
to be sufficiently small. See Subsection 5.5.2 for details on the implementation regarding
the issue of discrete force calculation and adaptive mesh refinement; see also Section 6.2 for
some notes on the choice of the parameters of the fluid-structure interaction forces.

As a result from the surface discretization, i.e. the surface mesh and the numerical integra-
tion (4.4), we obtain for every surface element a number of point-wise pair contributions
from the interaction of any SPH fluid particle with the sampling points on the boundary.
The forces on the fluid particles are directly given by (4.4), however, on the mechanical side
every single counterforce contribution needs to be extrapolated back onto the correspond-
ing vertices for each boundary element, since it is the vertices, and not the local sampling
points, that define the surface elements, and thus, represent the respective component of
the MBS.

Now, by the sketch in Figure 4.9 let us consider line segment j, subject to a force

fSj,k = −1
2 ljwk

(
f rep(ri, rSj,k) + fvisc(ri,vi, rSj,k,vSj,k)

)
(4.8)

exerted by the i-th SPH fluid particle and acting in the local point rSj,k given by gSj,k. Based
on this force, we need to determine the “equivalent” forces fSj,A and fSj,B acting on the
vertices; to that end, assuming that the line segment is rigid, the balance of forces,

fSj,A + fSj,B = fSj,k, (4.9)
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Figure 4.9.: Sketch of surface line segment j (length lj) and the force fSj,k acting on the
local sampling point rSj,k due to the interaction with the SPH particle i, with
the corresponding extrapolated forces fSj,A and fSj,B acting on the vertices,
obtainend from linear weighting using gSj,k.

as well as the balance of moments with respect to any reference point rref ,(
rSj,A − rref

)
× fSj,A +

(
rSj,B − rref

)
× fSj,B =

(
rSj,k − rref

)
× fSj,k (4.10)

must be satisfied; note that the latter does not depend on rref , if the balance of forces is
satisfied. However, this system of equations has no unique solution – it is underdetermined
– which is clear since we have assumed that the body associated with the line segment under
consideration is rigid, and hence there are infinitely many possibilities to choose fSj,A and
fSj,B such that the resulting force and moment is equal to the original induced by fSj,k. For
further clarification of this fact just think of any additional force-counterforce pair acting
in opposite directions parallel to the line element on its two vertices; this changes fSj,A and
fSj,B, but leaves the total force and moment unchanged. Thus, a reasonable extrapolation
(or interpolation) scheme satisfying equations (4.9) and (4.10) is necessary to establish a
relation between the forces in the vertices and the force acting on the local sampling point
on the line element.

Here, we use linear weighting by the distance between the sampling point and the respective
vertex, which is given by the factor gSj,k from our linear spatial interpolation (4.5) by

fSj,A = (1− gSj,k)fSj,k
fSj,B = gSj,kf

S
j,k. (4.11)

It is easy to show that this scheme of force redistribution satisfies the balance of forces and
moments; it should be noted that exactly the same result is obtained from a direct solution
of (4.9) and (4.10) without any assumptions if only the force components orthogonal to the
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surface element are considered, in which case the balance equations have a unique solution
(in 2D, as well as 3D). Thus, the counterforces corresponding to F rep

i and F visc
i , acting on

an element j due to interaction with the SPH fluid particle i, are given by

fSj,A =
Mj∑
k=1

(1− gSj,k)fSj,k

fSj,B =
Mj∑
k=1

gSj,kf
S
j,k. (4.12)

As a side note, in 3D the procedure for integration is analogous, except that now 3D
surface elements (triangles and/or quadrilaterals), defined by 3 or 4 vertices and their
velocities, have to be considered. The numerical surface integration then once more is
just a point-based procedure (e.g. 7-point Gauss integration over a triangular area), and
interpolation for velocities is again done linearly. Using the linear weighting scheme for
the force redistribution of the contributions of the sampling points to the actual surface
element vertices, the balance equations for force and momentum are also satisfied. In case
of triangular elements, both the numerical integration, linear interpolation, as well as the
force redistribution is best done by the parametrization of the triangle areas in barycentric
coordinates, which take on the role of above factors (1− gSj,k) and gSj,k.

Further information on the implementation of the contact formalism is given in Subsection
5.5.2. Refer to Subsection 5.4.2 for some details about how the resulting forces (4.12) are
actually applied on the components of the multibody system.

4.4. Interface and synchronization

In the previous sections the main idea of the coupling concept as well as the model and
numerical computation of the SPH-wall interaction have been discussed. Based on the
latter, we can now proceed to develop an interface design. As already mentioned, an
interface comprises a specific set of data as well as communication routines, and is used on
both sides of the coupled system. The crucial task of the interface is the establishment and
definition of a link between the two sides, based on mutually used and exchanged data.

As to the latter, on the LIGGGHTS/SPH side the only data necessary for the contact
formalism is the geometrical and kinematical information about any surface in contact with
the fluid, which is, firstly, given by the surface mesh – attached to and possibly defined by
the associated body in the MBS – consisting of a set of vertices based on which the surface
elements are defined, and secondly, the respective velocities. On the other hand, the only
information needed HOTINT/MBD-sided are the forces acting on those vertices, or, more
precisely, on the corresponding MBS component at those vertices, due to the interaction
with the fluid.
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Thus, the minimal data set necessary for the coupling approach at hand consists of

• three arrays containing the positions and velocities of, and the forces on boundary
vertices, which shall be denoted as r, v and f, respectively,

• and an array containing pairs of numbers (in 2D) referencing the points in r, defining
the surface (line) elements via their vertices (3D-case: sets of 3 or 4 numbers, for
triangular and quadrilateral elements), in the following referred to as el.

Additionally, for reasons of the problem set-up, data processing and evaluation as well as
visualization, fluid data – the position, velocity, density and pressure of the SPH particles
– can be added to the data set of the interface.

Concerning the communication, consequently, routines for the exchange of r and v from
HOTINT to LIGGGHTS, and f the other way around, as well as the transfer of SPH data
from LIGGGHTS to HOTINT must be included; as already mentioned in Subsection 4.1.2,
the data transfer shall be done via TCP/IP. More details on this and a discussion of the
actually implemented interface are given in Section 5.2.

At this point the flexibility of the developed strategy should be pointed out: On the fluid
side, it not only does not matter at all which kind of structural component lies under a
surface mesh, but any surface element can be treated also completely independently from
the underlying bodies. In other words, the sequence in which the elements are stored in el,
as well as the order in which they are referenced and evaluated in the force computation,
can be chosen freely. Furthermore, it should be noted that there is no need to define
“inside” and “outside” of a given geometry – any kind of configuration, e.g. open or closed
geometry, empty or filled with fluid, moving around in empty space or in another reservoir
filled with fluid, is treated in the same universal way. On the other hand, the only thing
that “remains” from the fluid on the side of the multibody system are additional forces
on the components in certain points. Because of the above and the fact that the contact
computation effectively is a pair evaluation between particles – any pair consisting of one
SPH particle and a local sampling point on a boundary element – the approach is fully
compatible with (adaptive) mesh-refinement and arbitrarily moving and/or deforming, even
topologically changing geometry.

Now, we have made all necessary preparations – one could say, put together a “theo-
retical tool box” – to contemplate the implementation of the coupling of HOTINT and
LIGGGHTS, except for one final question: How can the two simulators actually be con-
nected and synchronized? The crucial point to this end is, as it has already been men-
tioned in Subsection 4.1.2, that the coupling must be done within the time-stepping. It
should be pointed out that both sides use very different integration schemes – HOTINT a
high-order implicit algorithm with adaptive time steps (cf. Subsection 2.2.3 and 2.1.3.3),
LIGGGHTS an explicit two-stage second-order integrator (cf. Subsection 3.2.3). Again,
the HOTINT-side – as server – is the one to determine the size of the time steps, which then
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HOTINT: 
• send 0 0( ), ( )t tr v  to LIGGGHTS 

LIGGGHTS: 
• receive 0 0( ), ( )t tr v  from HOTINT 
• calculate 0( )SPH tf  and 0( )tf  based on 

0 0 0 0 0( ), ( ), ( ), ( ), ( )SPH SPH SPHt t t t tρr v r v  
• send 0( )tf  to HOTINT 

HOTINT: 
• receive 0( )tf  from LIGGGHTS 

starting point 0t t= : 
HOTINT: 0 0 0( ), ( ), ( )t t t dt−r v f  
LIGGGHTS: 
 0 0 0 0( ), ( ), ( ), ( )SPH SPH SPH SPHt t t dt tρ−r v f  
 0 0( ), ( )t dt t dt− −r v  

integration 0t t dt→ + : 
HOTINT: 

• calculate 0 0( ), ( )t dt t dt+ +r v  based 
on 0 0 0( ), ( ), ( )t t tr v f  

LIGGGHTS: 
• calculate 

0 0 0( ), ( ), ( )SPH SPH SPHt dt t dt t dtρ+ + +r v
based on 

0 0 0 0( ), ( ), ( ), ( )SPH SPH SPH SPHt t t tρr v f  

Figure 4.10.: Scheme of the program flow of one time step, starting at a time t = t0
and integrating to t = t0 + dt. Here, r(t), v(t), f(t) designate the arrays
containing positions and velocities of, and forces on the vertices (boundary
points) defining the boundary meshes of the multibody system components;
correspondingly, rSPH(t), vSPH(t), fSPH(t), ρSPH(t) denote the arrays for
positions, velocities, forces and densities associated with the SPH fluid par-
ticles. f(t) is assumed to be constant over the stages (during the “substeps”)
of the implicit integration scheme on the multibody side.
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are communicated with the LIGGGHTS-side; thus, the time steps for the fluid simulation
are in-sync with the respective step size in the integration routines of HOTINT, which, for
the fluid side of course has nothing to do with real adaptive step size control. Note that
the range of the size of the time step must be defined appropriately by the user, effectively
meaning that it has to be adjusted according to the requirements of the explicit integration
schemes on the fluid side; cf. Section 6.2 for more details. While HOTINT computes one
time step of size dt via several intermediate substeps according to the stages of the implicit
integration scheme (cf. Section 2.1.3.3), LIGGGHTS performs one integration step of equal
size dt explicitly. At that, we assume a constant force due to the contact with the fluid for
all stages of the implicit integrator on the structural side. With a flow diagram in Figure
4.10, illustrating how the coupling of the two simulators within the time-stepping based on
the interface outlined above works, this discussion shall be concluded.

It should be noted that effectively only r, v and f – in fact, only the dynamic parts of those
arrays (cf. Section 5.2) – must be exchanged in every single time step, given that el does
not change during time. The latter stays constant as long as the surface mesh itself, or,
more precisely, the association of the surface elements with certain corresponding boundary
points (vertices) do not change; because that is usually true and the fact that the mesh-
refinement is only done locally on the LIGGGHTS-side, el only needs to be initialized (i.e.
transferred from the HOTINT- to the LIGGGHTS-side before the first time step). This
can be significant, especially in case of large static boundary geometries; the transfer of
everything else, SPH particle data, for example, is optional. Confer also Section 5.3.2 for
issues concerning the performance of the TCP/IP data transfer.

As an important remark, the synchronization of the coupled program flow comes more
or less automatically, not to say, inherently with the TCP/IP routines for data exchange
and communication, because the recv()-routines – those functions responsible to receive
and process TCP/IP packets over some specified network IP address and port – in the
TCP/IP socket APIs used in the implementation are so-called “blocking calls” by default.
This means, if the program execution on either side reaches a point where data from the
respective other side is needed, it just stops there and waits until that information is received
(unless specified otherwise), thus accounting for synchroniation; see the following section
for more details on the implementation.
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5.1. Introduction and overview

The following sections shall give an insight into the implementation of the coupling of
HOTINT MBD and LIGGGHTS SPH, the theoretical basis of which has been discussed in
the previous chapter. Since both sides are based on C++, the implementation naturally
was also written in C++; it should be pointed out that every fragment of code of this
implementation was written and developed from scratch by myself, using [45], as well as
[46] and [47] as C++ standard references, along with [53] and [54] concerning all network
programming issues.

HOTINT is a Microsoft Visual Studio project and was compiled and run in the 32-bit
version on the platform MS Windows 7 (64 bit); thus, the code development on this side
was done in Visual Studio 2005 Professional, obtained from the Johannes Kepler University
Linz via the MSDN Academic Alliance [48]. The program package LIGGGHTS, on the
other hand – as an open source project – was retrieved from [22], and compiled and run
in 64 bit on the platform LINUX Fedora 15, for the simulations in Chapter 6 in fact
on the same machine as HOTINT, with Windows as host platform, and LINUX running
via the multi-core supporting emulator Oracle VM VirtualBox (version 4.1.4; cf. [49], as
LIGGGHTS freely distributed under the terms of the GNU General Public License (GPL)).
In that case, the TCP/IP communication was effectively done via a 1-GBit/s virtual network
adapter (VirtualBox Host-Only Ethernet Adapter) simulated by the virtual machine. The
code and program development on the LINUX side was performed using the editor “gedit”
and command-line based compilation via makefiles, utilizing a “g++” (or “gcc”) compiler
version invoked by the MPI wrapper compiler “mpic++” for MPI-parallelized applications.
The use of the latter is convenient, since it automatically includes all linking dependencies
and header files necessary to compile an MPI application.

In the following, the implementation of the coupling formalism, in total consisting of seven
components the file names of which (headers and source code) are listed below, shall be
outlined; a sketch of the (very) basic structure of the coupled application, along with a
brief description about how the whole system works in principle, is given in Figure 5.1. For
detailed discussion the reader is referred to the following sections.
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• dn (cf. Section 5.3): contains routines for platform and architecture-independent
exchange of floating point (double precision) numbers

• interface_baseclass (cf. Section 5.2): contains the base class interface_base-
class defining the interface (data structure and communication)

• exchange_class_windows (cf. Subsection 5.4.1): includes the central class DataH
for TCP/IP server functionality (Windows), problem set-up, data initialization, com-
munication, and some auxiliary classes

• exchange_class_linux (cf. Subsection 5.5.1): contains the central class DataL ac-
counting for TCP/IP client functionality (LINUX), problem set-up and initialization
of LAMMPS/LIGGGHTS instances (used as static libraries), communication

• fsi_communication_element (cf. Subsection 5.4.2): contains the class
fsi_communication_element for the HOTINT-sided implementation, connection be-
tween DataH and the framework of HOTINT

• fix_FSI_SPH (cf. Subsection 5.5.2): contains the class fix_FSI_SPH for the
LIGGGHTS implementation of the contact formalism, MPI parallel

• wrapper code LINUX (cf. Subsection 5.5.3): wrapper program for instantiation
and initialization of a DataL object and the MPI environment, actual client application

 HOTINT 

fsi_communication_element 

DataH 

wrapper code LINUX 

DataL 

 

LAMMPS/LIGGGHTS 

communication and 
data exchange using dn 
via TCP/IP 
 
data structures and 
communication  
routines declared in 
their mutual baseclass 
interface_baseclass 
 

fix_FSI_SPH 

Figure 5.1.: Sketch of the components and their role in the coupled application: HOTINT
runs on the Windows side as main application, and includes the special ele-
ment fsi_communication_element (cf. also Subsection 2.2.3) in the model
files which, in turn, makes use of the functionality of the class DataH de-
fined in “exchange_class_windows” (problem set-up, initialization, commu-
nication). On the LINUX side, the “wrapper code LINUX” runs as client
and main application, utilizing the functionality of the class DataL de-
fined in “exchange_class_linux” (instantiation and initialization of LAMMP-
S/LIGGGHTS, communication) time step-wise in a loop controlled by the
server side. At that, LAMMPS/LIGGGHTS is included as a static library,
and itself uses fix_FSI_SPH for the computation of the SPH-wall interaction.
Communication and data transfer is done via TCP/IP, effectively between the
classes DataH and DataL, based on the interface defined via their mutual base
class interface_baseclass and using the routines in “dn” for the exchange
of double precision numbers.
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The core of the implementation is formed by the classes DataH and DataL defined in “ex-
change_class_windows” and “exchange_class_linux”, respectively, both derived from their
mutual base class interface_baseclass which determines the interface (cf. also Section
4.4). Here, DataH offers the server functionality and accounts for the problem set-up on
both sides and initialization of the interface data, as well as the exchange of information
with the client, including command sequences for control of the client application; DataL,
on the other hand, is the counterpiece to the latter, provides the corresponding client func-
tionality, moreover, integrates and controls LIGGGHTS via the LAMMPS baseclass, and,
of course, also accounts for transfer of interface data.

On the Windows / server side, HOTINT is the main application. As it has already been
discussed in Section 2.2, every model set-up here is assembled on the basis of some kind
of elements (cf. Figure 2.3), all of which have their own specific functionality invoked at
certain points in the program execution, for example in the different stages of one timestep.
Now, the additional “special” element fsi_communication_element serves as connector
between the framework of HOTINT and DataH. Via this element, the interface data and
communication functionality of DataH are accessed and used in every time step, for ex-
ample for the actual initialization after the HOTINT problem set-up before the first time
step, or the access to and application of the forces acting on the boundary points to the
corresponding elements (cf. also Sections 4.3 and 4.4).

On the LINUX / client side, the “wrapper code LINUX” runs in a loop – after initialization
of the MPI environment – communicating time step-wise with the server, i.e. effectively
with a DataH object, and utilizing the functionality of DataL (e.g. exchange of interface
data). LIGGGHTS can be built as an executable, as well as a static library, and it is
implemented in the form of the latter here. DataL, instantiated by the wrapper code, in
turn creates an instance of the LAMMPS top-level base class on each MPI process, and
thus integrates the LIGGGHTS environment. In that base class, a pointer is included to
the instance of DataL which the LAMMPS base class was instantiated by. Hence, via this
pointer, any functionality of DataL, for example the access to the data defining the positions
and velocities of the vertices of the boundary meshes, can be used within the framework of
LIGGGHTS, which is done in the fix fix_FSI_SPH to calculate the SPH-wall interaction.
Note: A “fix” in LAMMPS/LIGGGHTS is a routine which is called at some point in every
time step; see Subsection 5.5.2 for more information.

Finally, a few notes concerning the parallelization shall be mentioned. Everything on the
LINUX side, as LAMMPS/LIGGGHTS itself, is written fully parallel using the MPI envi-
ronment. At that, MPI stands for “message-passing interface” and is a standardized and
portable message-passing system developed for parallelization of applications on parallel
computers. Initially, it was designed particularly for distributed memory machines, since
the parallelization is based on different processes – each associated with one or a set of
processors with an own (individual) memory space – and explicit mutual communication.
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For more information on MPI, refer for example to [50, 51], which have also been used as
standard references in this work. As to the coupled application here, of course only one
– the first – process is used for communication; all others are just “listeners” to this first
process. In the current implementation, however, in contrast to the data LIGGGHTS is
working with, the complete interface data (except for the force arrays) exists as identical
copies in each memory space and is kept synchronized during the whole runtime. A shared
memory approach, which is based on a common memory space for all processes and is also
supported in a certain way by MPI since the 2.0 standard, or a data distribution model
with the distributed memory approach where any process locally only has that part of data
which is actually needed could additionally increase efficiency here.

5.2. Interface

The interface, as it has been discussed in the Section 4.4, is defined by the data and the
corresponding exchange routines necessary for the coupling of both sides, and implemented
in form of the class interface_baseclass.h, used on both sides as base class for the core
components DataH and DataL in “exchange_class_windows” and “exchange_class_linux”,
respectively.

The data set is given by

• unsigned short dim specifying the dimensionality of the problem,

• the double arrays double* _r, _v, _f containing positions, velocities, and forces of the
vertices of the surface meshes (in the following also referred to as boundary points),

• the total number of boundary points unsigned int n, the number of static boundary
points int nstat,

• the integer array unsigned int* _el containing a set of pairs of numbers referencing
points in _r and defining vertices of the surface elements (line segments) in 2D,

• the number of surface elements unsigned int nel,

• the time step size double dt,

• the double arrays double* _rSPH, _vSPH, _rohSPH containing SPH particle data –
positions, velocities, and densities, respectively, for a

• total number unsigned int nSPH of SPH particles, and finally,

• the parameters int refinement_option specifying how the adaptive refinement of
the surface meshes should be performed (see Table 5.1), along with

• double dr defining the refinement resolution (cf. Sections 4.3 and 5.5.2 for more
details).
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refinement_option 2D case 3D case
0 - no refinement
1 recursive refinement based

on the original surface
meshes in every time step

recursive refinement based
on the original surface

meshes in every time step
2 - pre-refined mesh created

before the time stepping, no
additional refinement

3 - as option 1, but based on the
pre-refined mesh of option 2

Table 5.1.: Specifications of the parameter refinement_option. In 2D, the parameter is
reset to 1 in any case.

Here, the static boundary points, which are listed right after the regular dynamic boundary
points, are associated with the surface meshes of static multibody components the geometry
of which neither moves nor changes with time in any way. Hence, that static part of the
data, as well as el only needs to be transferred once from the HOTINT- to the LIGGGHTS-
side in the initialization procedure (cf. Section 4.4). See also Subsection 5.3.2 for further
information concerning the performance of the data transfer. Note that in above data struc-
ture, only the standard one-dimensional C-arrays are used to store any multidimensional
array-like quantity, for reasons of compatibility with the used MPI routines.

Besides the routines for data access, i.e. read and write routines for member variables / the
interface data, the member functions declared in this interface class for communication are

• virtual void getrv(): receive the dynamic part of _r and _v

• virtual void sendrv(): send the dynamic part of _r and _v

• virtual void getrvfull(): receive the full _r and _v arrays

• virtual void sendrvfull(): send the full _r and _v arrays

• virtual void getrSPH(): receive _rSPH

• virtual void getvSPH(): receive _vSPH

• virtual void sendrSPH(): send _rSPH

• virtual void sendvSPH(): send _vSPH

• virtual void sendforce(): send _f (only for dynamic boundary points; f ≡ 0 for
all static points by default)

• virtual void getforce(): receive _f (only for dynamic boundary points)

• virtual void getrohSPH(): receive _rohSPH

• virtual void sendrohSPH(): send _rohSPH
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This declares the functionality of the interface; the actual implementation of the routines is
done in the derived classes DataH and DataL according to the respective requirements. See
Subsections 5.4.1 and 5.5.1 for more details; for the complete C++ code of the interface
base class, refer to interface_baseclass.h in the appendix.

5.3. Exchange of double-precision numbers

5.3.1. Conversion and platform-/architecture independent exchange

For the problem at hand, most of the data which should be exchanged via TCP/IP between
a 32-bit application running on a Windows host, and a 64-bit application on a LINUX
platform consists of double-precision numbers. The transfer of double-precision numbers
between different machines with different platforms and/or architectures, in constrast to
what might be supposed concerning this issue, is not a straight-forward matter, even though
there is, of course, an IEEE standard universally covering the binary representation and
arithmetics of floating-point numbers [52]. According to the latter, the standard binary
representation of a double-presicion number d is given by 64 bits (8 bytes) via

d = (−1)s ·m · 2e, (5.1)

where s is the sign bit (0 or 1), m is the mantissa, a positive number defining the precision
represented by 53 bits corresponding to 16 digit decimal number (hence 16 digit decimal
precision), and e is the exponent represented by 11 bits, thus ranging from -1023 to 1023
(2±1023 ≈ 10±308).

At first lets have a look at the representation of an integer. For 32-bit applications an
integer consists of 4 bytes, or 32 bits, which define its binary representation and are stored
sequentially in the memory - the question here is, however, in which order? The two
commonly used possibilities, depending on the hardware architecture, are the so called “Big-
Endian”, also known as “Network Byte Order”, and “Little-Endian” byte order, according
to whether the most significant bit or the least significant bit is stored first, i.e. at the
lowest memory address. Similarily, the format of the binary representation of a double
is universally defined according to equation (5.1), however, it is not specified how the bit
sequences are actually stored in the memory.

This is the reason why the simple approach of sending a double-precision number just by
transferring a 1:1 copy of the corresponding memory on one machine to another machine
might work, but also might fail completely. Therefore, universal portable transfer routines
have been written allowing for the platform- and architecture-independent exchange of
double-precision numbers; the corresponding header and source code dn.h and dn.cpp are
given in the appendix.

All of these routines are based on the standard functions
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• htonl(unsigned int a): converts an unsigned integer (long) a from Host Byte Order
(the byte order of the host system) to Network Byte Order (Big Endian)

• htons(unsigned short a): converts an unsigned short a from Host Byte Order to
Network Byte Order

• ntohl(unsigned int a): converts an unsigned integer a from host Network to Host
Byte Order

• ntohs(unsigned short a): converts an unsigned short a from host Network to Host
Byte Order

included in the winsock2-library on Windows (header winsock2.h) and in netinet/in.h
on LINUX. With those routines, any unsigned short or integer can be transformed to
Network Byte Order on one machine, then sent via TCP/IP to the other machine, and
finally converted back again from Network to Host Byte Order. Note that this is only
implemented in a 32-bit version, where an (unsigned) integer is assumed to be represented
by 4 bytes, and an (unsigned) short by 2 bytes. In case of 64 bit applications, the size
of (unsigned) integers is 8 bytes, and for the present problem, we want to exchange data
between with a 32-bit and a 64-bit system. Luckily, unless the range of a 4-byte unsigned
integer (i.e. 0...4294967295) is exceeded, the routines work correctly even for this mixed
case or transfers between two 64 bit systems, since only the effectively first 32 bits (starting
with the least significant bit) are accessed here in the memory.

Now, any double precision number d = (−1)s ·m · 2e – considering the decimal precision of
16 digits – is transformed into two unsigned 4-byte integers a1, a2 and one unsigned short
exp based on

a1 = ipart(108 ·m)

a2 = ipart(108 · (108 ·m− a1))

exp = |e| , (5.2)

where ipart(x) denotes the integer part of a real number x, which in the implementation
is simply accomplished by explicit type conversion to unsigned int, and m and e are
obtained from the function frexp(double d, int* ex) in math.h, which returns (−1)sm
and stores e to ex, in both cases including the sign. In above approach, those signs are
stored separately in the last bit of a1 and a2; note that for the representation of an 8-digit
integer number, which is the case with a1 and a2, only 30 bits are needed.

Thus, d is converted to two unsigned integers and one unsigned short, which, in turn, can be
transferred platform- and architecture- independently using above listed Network-to-Host
and Host-to-Network routines; the re-conversion of a1, a2, exp back into a double precision
number then works in an analogous way. Of course, the price to pay here is a data overhead,
since in this integer representation 10 bytes instead of 8 bytes are required for each double.
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For details on the implementation, see the files dn.h and dn.cpp in the appendix; more
information on the actual performance of the double-precision exchange routines is given
in the following subsection.

5.3.2. Notes on the performance

Of course, the overall TCP/IP performance depends on the used hardware (the whole
system, in particlular the network adapters) as well as software (drivers, firewalls,...); also
the computational effort for the conversion process has to be taken into account. For
todays most common bandwidths, 100 MBit/s and 1 GBit/s, one can assume an actual
maximum data rate around 10 MB/s and 100 MB/s, respectively, which here theoretically
corresponds to the platform- and architecture-independent transfer of 106 and 107 double
precision numbers per second. However, for smaller amounts of data, or large amounts
of data split into individually transferred small parts, performance decreases significantly
probably due to time delays for the preparation and send/receive requests of that data
packages; note that the data overhead of the TCP/IP packet headers is negligible in almost
any case (except e.g. for the exchange of single double precision numbers), since it is only
40 bytes in total at a typical packet size of 1500 bytes via Ethernet connections.

Several tests for the “double exchange routines”, each of them run and averaged over 10000
cycles, were performed via a 1 GBit/s virtual network bridge between a Windows 7 host
and a LINUX Fedora 15 running on a virtual machine (cf. Section 5.1), with an Intel i7
2720QM CPU:

• Average time for one conversion cycle (conversion and back-conversion; Windows-
sided, i.e. on the host system); it was determined as approximately tc ≈ 0.15µs.

• Average effective transfer rate of double precision numbers in dependency of the num-
ber of doubles which are sent per call to a TCP/IP send/receive routine. This was
done including the conversion and back-conversion, as well as a consistency test by,
firstly, converting and transferring the double arrays from the Windows to the LINUX
side, re-converting there, and then doing the same thing in the other direction, where
finally the error between the original and the actual array is calculated. At that,
the consistency test required the average error to be in the range of 10−16, i.e. the
precision limit of double precision numbers. The results are given in Figure 5.2.

• Actual data transfer rate in dependency of the number of doubles which are sent per
call to a TCP/IP send/receive routine. See Figure 5.3 for illustration.

• Relative overhead due to the conversion, which is defined by (tc + tt)/tt − 1 = tc/tt,
where tc designates the time for one conversion cycle (see the first point), and tt

the time for the single transfer in one direction of one double precision number, in
dependency of the number of doubles which are sent per call to a TCP/IP send/receive
routine. The data is shown in Figure 5.4.
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Figure 5.2.: Transfer rate of double precision numbers rd vs. the array size nd (i.e. the
number of doubles sent per call to a TCP/IP send/receive routine); the bench-
mark included conversion and back-conversion, as well as a consistency test.

Figure 5.3.: Effective TCP/IP data transfer rate vs. the array size nd (i.e. the number
of doubles sent per call to a TCP/IP send/receive routine); the test was
performed using a 1 GBit/s virtual network connection.

72



5.3. EXCHANGE OF DOUBLE-PRECISION NUMBERS

Figure 5.4.: Relative conversion overhead tc/tt vs. the array size nd (i.e. the number of
doubles sent per call to a TCP/IP send/receive routine), based on tc ≈ 0.15µs
determined before.

Assuming 100 MB/s effective data bandwidth, corresponding to 10−7 s transfer time per
double, and above determined time for a conversion cycle, the maximum transfer rate rd,max
on the test system would be

rd,max ≈
1

tc + 10−7 = 4 · 106 s−1. (5.3)

Summarizing, in a real-world application the estimated maximum transfer rate of double
precision numbers probably lies somewhere in the range of 1 . . . 6 · 106 s−1 using a 1 GBit/s
ethernet connection, depending on the hardware set-up. Even in the 3D case, this would
be enough to exchange the minimum data set (i.e. positions, velocities of and forces on
the discrete boundary points, cf. Section 4.4) of ≈ 50000 individual surface elements (with
3 vertices each) up to several times per second; thus, in this example the TCP/IP data
transfer is not a bottle-neck as long as a full time step (without the communication) on
both sides can be performed as fast or even faster, which is most probably not the case if one
is working on standard desktop machines. Typically, the main computational effort lies on
the fluid side, however, a problem with 50000 surface elements on the structural side, which
– with classical finite elements – probably corresponds to several 100000 volume elements,
is also very large. Furthermore keep in mind that a refinement of the surface meshes, if
necessary, is done anyways locally on the fluid side, which allows for using coarse surface
meshes for the components of the MBS; in particular, large (rigid) plane surfaces may
be represented by one single surface element only. Hence, the bottleneck of the TCP/IP

73



CHAPTER 5. COUPLING OF HOTINT MBD AND LIGGGHTS SPH –
IMPLEMENTATION

communication becomes significant only in cases of relatively small and/or “fast” multibody
systems with high-resolution surface meshes and a massively parallel computed fluid side.

Anyways, in none of the simulated test problems (neither in the 2D nor the 3D case)
using standard desktop computers, the TCP/IP communication was limiting the overall
performance (cf. also Chapter 6). For some further notes on the issue of performance
and optimization potential, see the conclusions in Chapter 7; the role of the (optional) SPH
data, and the reason for its negligence in above considerations is discussed with the member
function IncomingDataCommunication in Subsection 5.4.2.

5.4. HOTINT / Windows - sided implementation

5.4.1. exchange_class_windows

The most important classes contained in the files exchange_class_windows.h and ex-
change_class_windows.cpp (see the appendix for the full C++ code) are DataInit and
DataH. At that, DataInit is a class with dynamic data structure (based on linked lists)
which is used for dynamically adding SPH particles, vertices of the surfaces meshes, as well
as the surface elements. As soon as this process is finished, the DataInit object then is
used to pre-initialize a DataH instance, or more precisely, the interface data (cf. Section
5.2) associated with that DataH instance.

The quantities represented by member variables of the DataInit class are

• unsigned short dim: dimensionality of the problem

• unsigned int n: number of boundary points (vertices of the surface mesh)

• unsigned int nstat: number of static boundary points, i.e. points associated with
the surface mesh of static components of the multibody system

• unsigned nel: number of surface elements

• unsigned nSPH: number of SPH particles

• vec3D* r, v: dynamic data structure containing position and velocity vectors of the
boundary points

• elemlist2D(3D)* el2D (el3D): dynamic data structures containing the numbers of
pairs of points (referencing r and v) which define the vertices of the surface line
segments in 2D (in 3D: sets of three vertices corresponding to triangular surface
elements)

• vec3D* rSPH, vSPH: dynamic data structures containing position and velocity vectors
of the SPH particles.

For the dynamic data management and access, the following member functions apply:
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• void add_elem(int*) and inline void add_elem(int a, int b, int c=0){
int temp[3]; temp[0]=a; temp[1]=b; temp[2]=c; add_elem(temp);}: adds a sur-
face element with vertices of numbers a,b,(c)in the data structure r to el2D (el3D)

• void add_point(double* r0,double* v0): adds a boundary point with position
r0 and velocity v0 to r and v

• void add_pointSPH(double* r0,double* v0): adds an SPH particle with position
r0 and velocity v0 to rSPH, vSPH

• unsigned int get_el(int i, int j) const: returns the j-th point of element i
(counting starts from 0)

• double get_r(int i, int j) const: returns the j-th coordinate of i-th boundary
point position (counting starts from 0)

• double get_v(int i, int j) const: returns the j-th coordinate of i-th boundary
point velocity (counting starts from 0)

• double get_rSPH(int i, int j) const: returns the j-th coordinate of i-th SPH
particle position (counting starts from 0)

• double get_vSPH(int i, int j) const: returns the j-th coordinate of i-th SPH
particle velocity (counting starts from 0)

With this, an arbitrary initial system consisting of surface elements (arbitrary single, sepa-
rate elements or elements associated with any kind of surface mesh) and SPH particles can
be set up. The corresponding DataInit object then is used for initialization of an instance
of the DataH class, which is discussed in the following.

The only additional member variables to the inherited data set of interface_baseclass
of the DataH class are two socket descriptors int s and int c identifying the TCP/IP
sockets used for communication which can be thought of playing a similar role as file
pointers or descriptors for file I/O operations, and a flag bool isinitialized specifying
the initialization status of the object.

Based on the data of the DataInit object and some additional specifications as constructor
arguments (e.g. the mass of the SPH particles), DataH accounts for

• the initialization of the interface data,

• the set-up of the TCP/IP server and the connection to the client (DataL object)
as well as the corresponding shut-down and clean-up (based on the socket libraries
winsock2.h on the Windows side, and the corresponding socket libraries for LINUX
platforms; see the appendix with the full C++ source or [53] and [54] for more (the-
oretical) information on this issue)

• the initial transfer of the interface data,
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• the set-up of LIGGGHTS based on a LIGGGHTS input script and additional com-
mands partly based on specifications made in the HOTINT parameter files,

• any communication/synchronization tasks between the HOTINT- and LIGGGHTS-
side during the time stepping, and

• any methods (read and write) neccessary for the access to the interface data set.

For reasons of clarity and, in particular, brevity, the functionality of DataH shall be illus-
trated only in the schematic diagrams shown in Figure 5.5 covering the functionality of
the constructor and initialization procedure, and 5.6 for a short description of the member
functions. Again, for detailed information, the reader is referred to the source code given
in the appendix.

5.4.2. fsi_communication_element

As a “special” element, the class fsi_communication_element is derived from the element-
class in HOTINT; thus, access to the whole multibody system defined and assembled in
HOTINT is given via a pointer of type MBS*. At that, the “top-level class” MBS con-
tains references to all components defined and created in the HOTINT model file. For
the representation of the SPH particles, additionally, new element classes were derived -
SPHParticle2D and SPHParticle3D - amongst other things containing SPH-specific data
(position, velocity, and density) about the corresponding particle. Surface meshes are
managed using HOTINTs GeomElement classes, which originally were designed for draw-
ing purposes only: A GeomElement, for example a line element in 2D or a triangle in 3D,
can be created and linked to an “actual” component of the multibody system, and then
(optionally) be drawn instead of the corresponding element; if that element undergoes any
kind of motion or deformation, the GeomElement moves and deforms accordingly, because
the link between the two element instances is established in terms of local coordinates fixed
on the bodies (Lagrangian perspective). However, it is exactly this and no additional func-
tionality necessary and sufficient for the implementation of the contact formalism on the
structural side - for each body interacting with the fluid, an appropriate mesh consisting
of GeomElements is created, which, at all times, represents the discretized surface of the
arbitrarily moving and/or deforming body. Thus, they define the surface mesh vertices –
local boundary points on the multibody components surfaces – which represent the surface
geometry and kinematics of the body on the fluid side, and which, in turn, the forces due to
the interaction with the fluid act on (cf. Sections 4.2 and 4.3). GeomElements additionally
can be connected to the ground of the MBS, i.e. fixed in the inertial frame, representing
arbitrary static geometric objects or static boundaries; in that case, any forces acting on
those components are set equal to zero.

The most important member variables of the communication element are

• int dim: dimenionality of the problem
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constructor / init procedure 

1. read IP info and set up the TCP/IP server socket 
2. wait for connection request of client and accept connection 
3. setup of LIGGGHTS 

 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
4. initialize and exchange interface data 

• autogenerated inputscript based on parameters 
given in the HOTINT parameter file (for 
simulation domain, any kind of SPH 
parameters (e.g. artificial viscosity), 
parameters  for SPH-wall interaction) 

• generation of particles (mass is defined here, 
positions, velocity, and initial density is set 
later via set-routines) 

• read in predefined inputscript (for every 
specification which is not changed from model 
to model, e.g. output style and logging 
options, integration options, used kernels, fixes 
for density calculation / smoothing, equation 
of state,...)  

HOTINT parameter file 
LIGGGHTS input script 
mass of SPH particles 

INPUT 

Figure 5.5.: Schematic diagram of the tasks of the DataH constructor and initialization
procedure.
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 member functions 

 

• getforce: receive the array of forces on the boundary 
points from the client 

• getrSPH, getvSPH, getrohSPH: receive SPH particle data 
(positions, velocities and densities) from the client 

• sendrSPH, sendvSPH, sendrohSPH: send SPH particle 
data (positions, velocities, density) to the client; used for 
initialization only 

• sendrvfull, sendrv: send coordinates and velocities of 
all, or the dynamic (non-static) boundary points only to 
the client 

communication routines implemented according to 
the interface 

extended communication and control functionality 

• sendone: send one LIGGGHTS (input script) command 
line to the client 

• sendcommand: send one of the following commands to the 
client: 
- "sendSPH" (transfer of SPH data from client to server / 
DataL to DataH object) 
- "sendf" (same for boundary force array) 
- "recvrv" (transfer of r and v from server to client) 
- "dummy" (command which does nothing, used for 
synchonization reasons only)  

• set_timestep: communicate the current time step size 
with the client  

• close_TCP: close and clean up the TCP/IP connection 

Figure 5.6.: Outline of the DataH member functions.

78



5.4. HOTINT / WINDOWS - SIDED IMPLEMENTATION

• int nparticles: number of SPH particles

• int nequi: number of LIGGGHTS-only equilibration steps

• TArray<int> sph: dynamic array containing the numbers of the SPHParticle2D(3D)
instances in MBS

• DataH dataobj: instance of the actual coupling and server class (cf. Subsection 5.4.1)

• TArray<int> boundary: dynamic array containing the element numbers of all surface
elements (integrated in HOTINT as GeomElements, as discussed above) in MBS

• TArray<int> boundary_flags: dynamic array with flags corresponding to boundary,
defining whether the respective element is a static (no motion or deformation during
the whole runtime) or a dynamic element; note that only the dynamic part needs to
be exchanged between the two sides in every time step,

whereas the essential member functions (for 2D) are outlined in Figure 5.7.

The core functionality, based on the routines for “problem set-up and data access” in Figure
5.7, is implemented in the functions InitializeDataCommunication (called before the
time-stepping), IncomingDataCommunication and OutgoingDataCommunication (called in
every time step), and Finalize (called when the whole computation is finished), which shall
be discussed in the following in more detail; a flow chart is given in Figure 5.8.

• InitializeDataCommunication:

– Boundary elements are rearranged into a dynamic and a static part, i.e. the
dynamic arrays boundary and boundary_flags are sorted accordingly.

– In that order, r, v, el2D are dynamically created and added via a local instance
of DataInit; the number of static points nstat is defined.

– rSPH and vSPH are created via this DataInit instance.

– dataobj is initialized based on above local DataInit instance, as well as the
LIGGGHTS input script and a given mass of the SPH particles which is cal-
culated from the (approximate) average volume per particle in the initial con-
figuration and the nominal initial SPH mass density. After some numerical
experiments using a regular particle distribution according to some kind of lat-
tice this has proven to be the most useful approach, since for a given volume
to be filled with fluid this yields a configuration relatively close to equilibrium;
however, some sort of equilibration procedure still is necessary (cf. a few points
below). Theoretically - if it is for any reason not important to fill a given volume,
i.e. that the effective volume occupied by the particles in dynamic equilibrium
is approximately equal to the volume they were distributed over initially - it
should be possible to start with any “unphysical” configuration of mass, density
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 member functions - overview 

 

• Set_FSI_Communication_Element: initializes the communication 
element with the dimensionality dim of the problem, the number of 
LIGGGHTS-only equilibration steps nequi, and pointers to the 
LIGGGHTS input script and a class containing all information of the 
HOTINT model parameter file 

• SetParticleData2D: sets position, velocity and density of the 
specified SPHParticle2D instance 

• SetParticlePos2D: sets the position of the specified SPHParticle2D 
instance 

• GetParticlePos2D: returns the position of the specified 
SPHParticle2D instance 

• GetParticleVel2D / GetParticleDensity2D: returns the velocity / 
density of the specified SPHParticle2D instance 

• AddSPH2D: adds one SPHParticle2D with given position, velocity, 
mass, and - for drawing - radius and color - to the 
fsi_communication_element  

• GetGlobPos2D: returns the global position of the specified point of one 
boundary/surface element (GeomElement) - here of one of two vertices 
defining a line segment 

• GetGlobVel2D: same as GetGlobPos2D, just for the global velocity 
• ApplyForce2D: applies a given force vector on the specified point of 

one boundary/surface element (GeomElement) 
• AddGeomLine2D: adds one line segment, attached to any component of 

the MBS, to fsi_communication_element 
• ResetVisc: resets the fluid viscosity (on the LIGGGHTS side) to an 

alternative value; used for switching to the actual viscosity after 
high-viscosity equilibration  

 

routines for problem set-up and data access 

core coupling functionality (see text for details) 

• InitializeDataCommunication 
• IncomingDataCommunication 
• OutgoingDataCommunication 
• Finalize 

Figure 5.7.: Outline of the important member functions of fsi_communication_element
(for 2D).
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IIIInnnniiiittttiiiiaaaalllliiiizzzzeeeeDDDDaaaattttaaaaCCCCoooommmmmmmmuuuunnnniiiiccccaaaattttiiiioooonnnn    

IIIInnnnccccoooommmmiiiinnnnggggDDDDaaaattttaaaaCCCCoooommmmmmmmuuuunnnniiiiccccaaaattttiiiioooonnnn    

OOOOuuuuttttggggooooiiiinnnnggggDDDDaaaattttaaaaCCCCoooommmmmmmmuuuunnnniiiiccccaaaattttiiiioooonnnn    

FFFFiiiinnnnaaaalllliiiizzzzeeee    

time line 

time stepping 

problem set-up 

data evaluation, 
post processing 

Figure 5.8.: Program flow chart with the core functionality of
fsi_communication_element.
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and particle distribution, and the SPH dynamics should lead to a dynamic equi-
librium. Nevertheless, initial configurations too far off of equilibrium may result
in artefacts (e.g. formation of drops with very low density inside and high local
density close to the surface, in case of an initial configuration with significantly
lower density than the nominal density) or even instabilities.

– Initialization of the density array with the nominal density (defined in the
HOTINT parameter file) in the interface via dataobj.

– Definition and communication of the initial time step dt over the interface (spec-
ified by the HOTINT solver options).

– Using the initial configuration of the MBS as fully static configuration, the
LIGGGHTS side now computes nequi "LIGGGHTS-only" equilibration steps
with an high viscosity. This has to be done if a quasi-equilibrium situation (or
something close to that) is desired on the fluid side before the actual dynamic
coupled simulation, since the particle configuration - for reasons of simplicity -
typically is created according to some kind of regular lattice with constant mass
and density, which clearly can not be an equilibrium configuration. It is difficult
to obtain an SPH equilibrium configuration in a different way. One possibility
- theoretically - would be to assume a nearly incompressible case and assign
constant density to all SPH particles, then initialize their positions in such a
way, that all forces - the internal forces due to pressure and viscosity as well
as the contact forces due to the SPH-wall interaction - vanish. One could also
think of some kind of density and/or mass variation procedure with a given
particle distribution in order to reach (local) equilibrium. However, since all of
these approaches either yield large, in general non-linear problems which would
have to be solved iteratively anyways, or are iterative procedures themselves to
begin with, there are no remaining benefits over the equilibration process with
the already implemented (iterative) process of time integration using the ini-
tial multibody configuration as static boundaries and sufficiently high viscosity
to ensure a high dissipation rate of the kinetic energy. As a final remark, it
should be noted that the existance of an external force field of some kind (e.g.
gravitational force) or the generation of a slight external pressure (e.g. using a
piston) is not a requirement, but certainly conducive to the equilibration process,
especially if it is important to completely fill up a geometry with fluid.

• IncomingDataCommunication:

– In predefined time intervals – depending on the present problem, approximately
once every hundred to a few thousand time steps – the full SPH data set (po-
sition, velocity, density) is transferred from the LIGGGHTS to the HOTINT
side via dataobj; it should be noted that this information is not essential for
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the calculation, but only used for visualization and post-processing. The reason
why this is not done in every time step is to minimize the average amount of
TCP/IP data transfer per time step and avoid a possible bottle-neck. For illus-
tration, consider the following estimate: For each particle, above SPH data set is
given by 9 double-precision numbers of the size of 10 bytes each in the exchange
procedures (cf. Section 5.3), i.e. 90 bytes in total. For 105 particles this would
result in 9 MB data size, and, assuming an ethernet connection with 100MBit/s
bandwidth, limit the number of time steps per second already to a value near
to or smaller than 1. Note that - especially for 3D problems - 105 particles is
not that much, and with parallel computation of the fluid simulation on several
CPUs the problem of that TCP/IP bottleneck can be significant. In contrast to
that, if the exchange of the SPH data is done only once in every thousand time
steps, which still is sufficient for visualization and post-processing in most cases
due to the very small time step (typically in the range of 10−5 s) required by the
explicit integration on the fluid side, the time overhead due to that data transfer
is negligible.

– The array of forces on the boundary (surface) elements is transferred from the
LIGGGHTS to the HOTINT side in every time step.

– Application of those forces to the corresponding boundary points, which are local
points on the components of the MBS defined by the associated GeomElements.

• OutgoingDataCommunication:

– Setting and exchange of the current time step size dt via dataobj.

– Positions and velocities of the boundary points are read from the GeomElements
in HOTINT, and updated in the interface via dataobj.

– That position and velocity data is transferred from the HOTINT to the LIGGGHTS
side via TCP/IP.

– A command is sent to the LIGGGHTS side to run one time step without recal-
culation of neighbor lists (which are still valid from the previous time step) or
the previous force array (cf. F (t) in equation (3.55)).

• Finalize:

– A termination command is sent to the LIGGGHTS-side; there, the time-step
loop is exited, the current TCP/IP connection is closed, everything is cleaned
up, and the wrapper code LINUX (cf. the following section) falls back into a
waiting loop, awaiting a new connection and problem set-up from the server
side.
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– HOTINT-sided, the server socket establishing the TCP/IP connection is closed;
the coupled simulation has finished, and the data now can be used for post-
processing.

5.5. LIGGGHTS / LINUX - sided implementation

5.5.1. exchange_class_linux

The class DataL, implemented in the files exchange_class_linux.h and exchange_class-
_linux.cpp (see the appendix for the full C++ code), is the counterpiece to the DataH
class discussed in Subsection 5.4.1. Thus, it includes the corresponding TCP/IP client
functionality and provides a response to any communication task initiated by the DataH
object on the server side, accounting for

• the set-up of the TCP/IP client and the connection to the server (DataH object) as
well as the corresponding shut-down and clean-up (based on implementations for net-
work sockets declared in unistd.h, errno.h, netdb.h, sys/types.h, netinet/in.h,
sys/socket.h, and arpa/inet.h; see [53] for detailed information on this issue)

• the set-up and initialization of LAMMPS/LIGGGHTS (via the instantiation of LAMMPS
objects), based on the input script data provided by the server and additional com-
mand line arguments

• the initialization of the interface data (received from the server)

• any communication/synchronization tasks between the HOTINT- and LIGGGHTS-
side during the time stepping, and

• any methods (read and write) neccessary for the access to the interface data set.

It should be noted that this class is, as any other part on the LINUX side, written in
parallel C++ code based on the message-passing interface (MPI, cf. also Section 5.1 and
[50, 51]); hence, one instance of a DataL object is created on each process – which, in this
implementation, corresponds to exactly one CPU core with an associated memory space –
where the total number of those processes is specified when the whole application is started
in the MPI environment via the wrapper program discussed in Subsection 5.5.3. In any case,
the actual communication with the server is done by one (the first) process only, whereas
all other processes play a passive role concerning the TCP/IP exchange, and synchronize
or update their data set via local communication with that first process. Apart from that,
any other task, including the actual simulation of the fluid, is done in parallel based on a
spatial decomposition of the simulation domain which is created during the construction
procedure of the LAMMPS objects. At that, if the application is started on n cores (processes),
the box-shaped simulation domain – previously specified via the LIGGGHTS input script
– is subdivided into n smaller boxes, each of them associated with one core. Consequently,
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every process deals with a local set of particles (corresponding to its subdomain), and
additionally accounts for contributions from the other subdomains which is accomplished
via explicit communication (message-passing) with the other processes. Note that in case
of short-range interactions, which is given for the pairwise contributions in the SPH as well
as the developed contact formalism (cf. Sections 3.1.2 and 4.2), only a fraction of that
non-local particles has to be considered, namely those within interaction range (i.e. the
kernel support radius) to the boundaries of the respective subdomain (“ghost particles”, cf.
Subsection 3.2.3). For a 3D system with a total number of N particles distributed over a
volume V , the average distance between two particles can be estimated by rav = (V/N)1/3;
now, let Vsub ≈ V/n be the volume and Asub ≈ V 2/3

sub the surface area of a local subdomain,
based on which the number of local particles approximately is Nloc ≈ (V 1/3

sub /rav)3, whereas
the number of particles from other subdomains with influence on the local particles is a
“surface contribution” on the order Nnonloc ≈ (V 1/3

sub /rav)2. In case of large systems with
V

1/3
sub � rav , corresponding to a large N or Nloc, we have Nnonloc � Nloc, and thus the

overhead due to communication between the processes becomes negligible. Due to the
efficient methods implemented for the computation of all pair interactions, which is the
only type of interaction here – either between pairs of two SPH particles or between an
SPH particle and a boundary point – the overall computational costs and thus, the CPU
time then scale roughly linear with N and, for sufficiently large Nloc, linear with 1/n:

tCPU ∝
N

n
≈ Nloc. (5.4)

If Nloc falls below a certain limit, performance with respect to the scaling by 1/n decreases
due to above mentioned inter-process communication overhead; as a rough estimate, in the
performed test simulations that limit lay in the range of Nloc ≈ 1000− 3000. Note that for
the 2D case, above considerations are completely analogous.

Getting back to the implementation, as it has already been pointed out DataL is, such as
DataH, derived from the interface base class (cf. Section 5.2), and moreover contains the
following additional member variables:

• int proc: number of the current process in the MPI environment

• int nprocs: total number of processes started in the MPI environment

• int c: TCP/IP socket descriptor of the client socket

• LAMMPS* lp: pointer to the LAMMPS/LIGGGHTS base class which is instantiated
by each DataL object during construction and provides complete access to the whole
functionality of LIGGGHTS; It should be noted that the LAMMPS base class was slightly
adapted by the addition of a pointer to exactly that DataL object which created the
respective instance of LAMMPS; via that pointer, the functionality of DataL can be
accessed from any point within LIGGGHTS, in turn.
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constructor 

1. obtain proc and nprocs via calls to specific MPI routines 
2. set up the TCP/IP client socket and wait for acception of the 

connection by the server (waiting loop) 
3. create a LAMMPS instance with optional command line 

arguments, and initialize LAMMPS/LIGGGHTS by 
subsequent reading of single input script lines received from 
the server (the DataH instance), containing both parts of the 
input script, as well as particle generation 

4. memory allocation on all processes 
5. receive the initial interface data set from the server (first 

process) and broadcast it to all other processes 

IP address and port defined by the 
TCP/IP server socket 
 

optional command line arguments for 
LAMMPS/LIGGGHTS 

INPUT 

Figure 5.9.: Schematic diagram of the tasks of the DataL constructor and initialization
procedure.

Once again, the construction procedure and most important member functions are outlined
in the Figures 5.9 and 5.10; for details refer to the source code in the appendix.

5.5.2. fix_FSI_SPH

The files fix_FSI_SPH.h and fix_FSI_SPH.cpp contain the class fix_FSI_SPH which was
developed and implemented as a so-called “fix” in the framework of LIGGGHTS, and which
is responsible for the computation of the fluid-structure interaction forces (cf. Sections
4.2 and 4.3). At that, a “fix” in LIGGGHTS is a class derived from the baseclass Fix
implementing member functions which are called at one or several stages of every time step
(cf. Table 5.2) after inclusion of the corresponding command along with its parameters in
the input script.

Here, the computation of the contact forces between fluid – in fact, the SPH particles – and
the components of the MBS is performed in stage 7 (post_force()) after the evaluation
of the (pair) interactions between the SPH particles, based on the parameters
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 member functions 

 

• sendforce: send the array of forces on the boundary 
points to the server 

• sendrSPH, sendvSPH, sendrohSPH: send SPH particle 
data (positions, velocities and densities) to the server 

• getrSPH, getvSPH, getrohSPH: receive SPH particle data 
(positions, velocities, density) from the server; used for 
initialization only 

• getrvfull, getrv: receive coordinates and velocities of 
all, or the dynamic (non-static) boundary points only 
from the server 

communication routines implemented according to 
the interface 

extended communication and control functionality 

• readone: receive and read in one LIGGGHTS (input 
script) command line 

• recv_command: receive one of the following commands 
from the server and execute it: 
- "sendSPH" (transfer of SPH data to the server / DataH 
object) 
- "sendf" (same for boundary force array) 
- "recvrv" (receive r and v from the server) 
- "dummy" (command which does nothing, used for 
synchonization reasons only)  

• get_timestep: receive the current time step size from the 
server and reset it in the LAMMPS instances 

Figure 5.10.: Outline of the DataL member functions.
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stage member function base class notes
1 initial_integrate() Fix first Velocity-Verlet substep

(R(t) and Ṽ (t), cf. equation
(3.55))

2 post_integrate() Fix neighbor list build (cf.
Subsection 3.2.3) and other
parallel operations

3 pre_force() Fix operations immidiately before
the main force calculation

4 force→pair→compute() Pair computation of short-range
pair interactions

5 force→bond→compute() Bond inclusion of bonds between
atoms

6 force→kspace→compute() Kspace k-space solver for long-range
interactions

7 post_force() Fix operations immidiately after
the main force calculation

8 final_integrate() Fix second Velocity-Verlet substep
(V (t), cf. equation (3.55))

9 end_of_step() Fix operations after the completion
of one full integration step

10 output→write() Output output of simulation data, log
file, ...

Table 5.2.: The stages of one time step in LIGGGHTS, with the corresponding member
functions implemented in classes derived from the given base classes (e.g. Fix)
which are called at the respective stage in every time step.
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• k: scaling factor for the repulsive force

• t: scaling factor for the viscous force

• r0: equilibrium distance, i.e. the relative distance between an SPH particle and a
boundary point at which the repulsive force vanishes

• rc = 2h: cut-off radius / range of the interaction potential between boundaries
(boundary points) and SPH particles; assumed to have the same value for both the
repulsive as well as the viscous terms,

which need to be specified for the fix fix_FSI_SPH in the input script, and the force densities
given in equation (4.2) using the Spiky kernel (cf. equation (3.24)), renormalized by α such
that

1
α
4riW (r′, ri, h) = 2−

∣∣r − r′∣∣ /h. (5.5)

As it has already been mentioned in the previous section, access to the data set of the
interface is given via a pointer added to the LAMMPS base class on that DataL object which
instantiates the LAMMPS object. Now, the evaluation of the interaction forces using the
discretized equations (4.4) is performed on each MPI process (here, equivalent to one CPU
core and its associated memory space) – operating on the interface data of the discretized
boundaries as well as the local SPH data (position, velocities and forces) the LAMMPS in-
stances are working with – according to the following scheme:

1. Generation of a cell grid: The rectangular (2D) or box-shaped (3D) simulation
subdomain is split into regular cells with edge lengths greater than, but as close as
possible to the interaction range of the contact forces rc.

2. Hashing of all local SPH particles on that cell grid: Each cell of the cell grid is
associated with a dynamic array of particle numbers (“cell list”). In every time step,
for any local SPH particle the cell which contains that particle is determined and the
particle number is added to the corresponding cell list. This, of course, is a linear
operation on the order O(Nloc) concerning the computational effort.

3. Iteration through all surface elements, adaptive refinement and force cal-
culation (2D): Now, an iteration through all surface elements (line segments defined
by their end points) is done, and the following steps are performed sequentially (ele-
ment after element):

a) The length l of the line segment is determined. If l > dr, i.e. the refinement
resolution defined in the interface (cf. Section 5.2) and specified in the HOTINT
parameter file, iterative bisections of the segment are performed, until the length
of the hereby created sub-elements lsub is smaller than dr. For numerical surface
integration, a 3-point Legendre-Gauss quadrature is used, and thus, dr should
be in the range of rc = 2h, as it has already been discussed in detail in Section
4.3. Note also that in the 2D case the adaptive refinement of each line segment
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is done in every time step, regardless of the parameter refinement_option (cf.
Section 5.2). As discussed in Subsection 5.3.2, for optimal performance and a
minimum of TCP/IP transfer data, the mesh refinement is performed locally on
the LIGGGHTS side.

b) Based on the refined sub-elements of each surface element, the positions of the
three local Gauss points are computed (cf. equation (4.5)) which are then hashed
on the cell grid. If any of those points lies inside a cell of the local cell grid, or one
of the “ghost” cells (within other subdomains) adjacent to the boundaries of the
current subdomain, the corresponding velocity of the Gauss point is calculated
(cf. again equation (4.5)), and the contact force is computed between that point
and all SPH particles which lie in the same or in adjacent cells of the cell grid.
Note that, with above definition of the cell grid, this covers all possible inter-
actions between, since any SPH particle in any other than the considered cells
just is outside the interaction range. This procedure, known as “cell method”
or “cell-linked lists”, is a well known method for the efficient determination of
contact pairs (contact search) in many-particle problems, especially in the field
of molecular dynamics: While the “brute force” approach would just go through
all Npairs possible pairs of Nb boundary points and Nloc SPH particles,

Npairs = NbNloc, (5.6)

here, with a number of nc cells in the cell grid of the local subdomain, merely a
fraction on the order

Npairs ≈ Nb
Nloc

nc
(5.7)

needs to be considered, which is significant especially for large systems. Keep
in mind that for a typical problem configuration the SPH smoothing length h

is chosen such that Nsupport ≈ 30 − 100 particles lie within the kernel support
domain. A reasonable choice of rc would be somewhere between h and 2h, which
means that any cell in the cell grid roughly also contains Nsupport particles,
yielding

nc ≈
Nloc

Nsupport
, (5.8)

and thus with equation (5.7)

Npairs ≈ NbNsupport � NbNloc. (5.9)

Importantly, for a given system configuration on a given number of processes
the computational effort of this procedure scales linearly with Nb, since Nsupport

stays approximately constant independent from spatial resolution. Thus, the
CPU effort of the whole fluid side – the computation of the SPH dynamics
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as well as the contact evaluation, which are performed sequentially as separate
(decoupled) tasks in every time step – scales linearly with the number of particles
and/or sampling (boundary) points (cf. also Subsections 3.1.3 and 3.2.3).

c) Update of force arrays: Finally, the calculated forces are added appropriately
to the LIGGGHTS force array of the SPH particles, as well as the force array
corresponding to the boundary points in the interface after appropriate redis-
tribution of the local forces to the endpoints of the respective line segment (cf.
equation (4.12)).

Refer to Section 4.3 for a detailed discussion of the theoretical and mathematical
background of the discrete calculation of the contact forces, the numerical integration,
as well as the force redistribution.

5.5.3. wrapper code LINUX

The wrapper code on the LINUX side provides the environment which the DataL instances,
and thus, LIGGGHTS, are running in; cf. to Figure 5.1 for an overview of the coupled
program structure.

Essentially, the wrapper program is a small top-level application making use of the func-
tionality of both DataL and LIGGGHTS – more or less – as static libraries. It is responsible
for

• the set-up of the MPI environment

• the instantiation and initialization of the DataL instance, and

• the calls to the communication routines via DataL, synchronized with the server side
(cf. Subsection 5.4.2) in the time stepping.

At that, a typical call to start the wrapper program via the command line would be

mpirun -np 4 main 192.168.56.1 12345 -log none,

which starts the executable main (compiled wrapper code LINUX) in the MPI environment
on 4 processes, with the command line arguments 192.168.56.1 (IP address of the server
socket), 12345 (port which the server socket is bound to), and one additional LIGGGHTS
command line argument, -log none (specifying that no log file should be written to the
hard drive), which is passed later to the LAMMPS instance.

Concludingly, an outline of the structure of the wrapper code is shown in form of a block
diagram in Figure 5.11; for further details, refer to the C++ source code given in the
appendix.
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wrapper code LINUX 

 

IP address and port of the TCP/IP 
server socket 
 

optional command line arguments for 
LAMMPS/LIGGGHTS 

INPUT via the command line 

• initialization of MPI 
• instantiation of DataL instances (IP address and 

port, and specified LIGGGHTS command line 
arguments are passed as arguments to its 
constructor) 

 

via the DataL instance: 
1. receive and set the time step 
2. receive and update data of boundary points 
3. receive and read in one LIGGGHTS command: 

run 1 pre no post no 
(compute one time step, without rebuilding of 
neighbor lists or recalculation of force arrays which 
are both still valid from the previous step) 

4. send the updated forces on the boundaries to the 
server 

5. optionally (typically once in every 100-1000 time 
steps): send the current SPH data to the server 
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Figure 5.11.: Block diagram of the LINUX-sided wrapper program.

5.6. Initialization and the coupled program flow

Concluding above detailed discussion of the implementation, the whole process of setting up
and defining a problem, followed by the initialization procedure and the coupled program
flow is sketched in the Figures 5.12 and 5.13.
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timeline 

MS Windows 
HOTINT MBD 

LINUX 
LIGGGHTS SPH 

write/develop a HOTINT 
C++ model file: 

• set up the MBS 
• create surface 

meshes and link 
them to the 
respective MBS 
components 

• create and include 
the SPH particles 

 

create a HOTINT 
parameter file*: 

• definition of all 
parameters relevant 
for both sides 

 

create the LIGGGHTS 
input scripts*:  

• definition of the 
fluid model on the 
LIGGGHTS side 

 

start HOTINT 
(via executable) 

start wrapper code LINUX 
(in MPI environment) 

model creation / 
definition 

initialization 

start 

Figure 5.12.: Block diagram and time line of the process of problem set-up, initialization
and the coupled application, from set-up to application start-up; * for ex-
amples for the HOTINT parameter file and LIGGGHTS input scripts refer
to the text.
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timeline 

MS Windows 
HOTINT MBD 

LINUX 
LIGGGHTS SPH 

post-processing, visualization, 
data-evaluation 

initialization 

run / 
time stepping 

finalize 

end 

wwwwrrrraaaappppppppeeeerrrr    ccccooooddddeeee    LLLLIIIINNNNUUUUXXXX    

 LIGGGHTS 

LIGGGHTS-only 
equilibration with high 
viscosity and static MBS 
geometry 

ffffssssiiii____ccccoooommmmmmmmuuuunnnniiiiccccaaaattttiiiioooonnnn____eeeelllleeeemmmmeeeennnntttt    

 InitializeDataCommunication 

instantiation and 
initialization of a DataH 
object 

wwwwrrrraaaappppppppeeeerrrr    ccccooooddddeeee    LLLLIIIINNNNUUUUXXXX    

 
instantiation and 
initialization of a DataL 
object, and with that, 
LAMMPS/LIGGGHTS 

ffffssssiiii____ccccoooommmmmmmmuuuunnnniiiiccccaaaattttiiiioooonnnn____eeeelllleeeemmmmeeeennnntttt    

 IncomingDataCommunication 

OutgoingDataCommunication 

wwwwrrrraaaappppppppeeeerrrr    ccccooooddddeeee    LLLLIIIINNNNUUUUXXXX    

 send-routines 
 

receive-routines 

ffffssssiiii____ccccoooommmmmmmmuuuunnnniiiiccccaaaattttiiiioooonnnn____eeeelllleeeemmmmeeeennnntttt    

 finalize 

wwwwrrrraaaappppppppeeeerrrr    ccccooooddddeeee    LLLLIIIINNNNUUUUXXXX    

 receive termination string 
and move to outer waiting 
loop, or end program 

Figure 5.13.: Block diagram and time line of the process of problem set-up, initialization
and the coupled application, from initialization and equilibration to the
end of the simulation and data evaluation/ post-processing; the blue arrows
indicate the TCP/IP data transfer.
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An example of a HOTINT parameter file and LIGGGHTS input scripts, corresponding to
the simulation example of Section 6.3, is shown below, with short notes to the various quan-
tities via comments which are displayed in green and indicated by “%//” HOTINT-sided,
and by “#//” LIGGGHTS-sided. Note that first the HOTINT parameter file is read, then,
on that basis, an autogenerated LIGGGHTS inputscript is generated and read in, followed
by the first LIGGGHTS inputscript (“LIGGGHTS inputscript 1”), the LIGGGHTS-only
equilibration phase with the static initial configuration of the MBS, and finally, the second
LIGGGHTS inputscript (“LIGGGHTS inputscript 2”).

HOTINT parameter file

1 %// model data for static consistency test simulation
2

3 SolverOptions
4 {
5 end_time = 0.7 %// total simulation time
6 Timeint
7 {
8 max_step_size = 0.5*1e-5 %// maximum time step size
9 min_step_size = max_step_size %// minimum time step size

10 tableau_name = "LobattoIIIA" %// integration scheme (LobattoIIIA)
11 max_stages = 2 %// maximum number of stages of the integration scheme
12 do_implicit_integration = 1 %// use implicit integration (default)
13

14 }
15 Solution
16 {
17 write_solution_every_x_step = 10
18 store_data_every = 0.001 %// interval for saving solution data and full

exchange of SPH data
19 }
20 Linalg
21 {
22 use_sparse_solver= 0 %// 1|(0) ... Sparse Jacobian and sparse solver is (

not) activated
23 }
24 Newton.max_modified_newton_steps= 40 %// maximum modified Newton steps.
25 }
26

27 LoggingOptions.output_level = 6 %// defines a level of output in the log (how
much information on the solution procedure is written)

28

29 Geometry
30 {
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31 width = 0.05 %// height of surrounding box
32 height = 0.1 %// width of surrounding box
33 fill_level = 0.4*height %// filling level
34 piston_thickness = 0.005 %// thickness of piston
35 piston_y = 0.75*height-0.5*piston_thickness %// height of piston
36 piston_v0 = 0.5*height %// initial, constant piston velocity in

-y-direction
37

38 offset_x = 0.0 %// offset of coordinate system
39 offset_y = 0.0
40 }
41

42 LIGGGHTS_SPH_parameters
43 {
44 SPHdensity = 1000. %// nominal SPH density
45

46 smoothinglength = 0.0015 %// SPH smoothing length; kernel support radius
is 2*smoothinglength

47

48 particlespacing = smoothinglength/1.9 %// initial distance between SPH
particles on regular square lattice

49 %// (set such that ~30-70 particles lie within the kernel support
domain)

50

51 SPHparticlemass = SPHdensity*particlespacing*particlespacing %// mass (here
(2D): mass per depth unit) of SPH particles

52

53 cAB = 20.0 %// (artificial) speed of sound in articifial viscosity;
approx 10 times the actual maximum flow velocity

54 viscosity = 1e-3 %// kinematic viscosity
55 highviscosity = 100.0*viscosity %// high viscosity for LIGGGHTS-only

euqilibration
56

57 xmin = 0. + Geometry.offset_x -0.01 %// definition of the LIGGGHTS
simulation domain

58 xmax = 0.05 + Geometry.offsetx_
59 ymin = 0.0 + Geometry.offset_y
60 ymax = 0.1 + Geometry.offset_y
61 zmin = -10.0 %// in 2D case zmin and zmax are ignored
62 zmax = 10.0
63

64 SPH_wall_cutoff = 2.0*smoothinglength %// cut-off radius for SPH-wall
contact

65 SPH_wall_equilibriumdist = 1.0*SPH_wall_cutoff %// equilibrium distance for
interaction force (0...r0 repulsion, r0...rc attraction (adhesion))
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66 SPH_wall_rep = 17500. %// scaling parameter for repulsive force
67 SPH_wall_visc = SPHdensity*viscosity/smoothinglength %// scaling parameter

for wall friction / viscous contact force
68

69 equilibration_steps = 100000 %// number of equilibration steps
70

71 refinement_option = 2 %// specification of the refinement option:
72 %// for 3D: 0...no refinement, 1... recursive refinement based on

original triangles in every time step,
73 %// 2... pre-refined mesh, no additional refinement in time-

stepping, 3... as 1, but based on pre-refined mesh;
74 %// for 2D: only option 1
75 %// default is 1
76

77 refinement_resolution = 4.0*smoothinglength %// specification of the
refinement depth / resolution

78 %// the mesh is refined in 2D (3D) until any line element (edge
of a triangle) is shorter than dr

79

80 }
81

82 TCP_data
83 {
84 port = 12345 %// port of the server socket
85 ip1 = 192 %// TCP/IP v4 adress of the server socket, given by ip1.ip2.ip3.

ip4
86 ip2 = 168
87 ip3 = 56
88 ip4 = 1
89 }

LIGGGHTS inputscript 1

1 #// variable definitions
2 #// any variables not defined here have to be defined in the HOTINT parameter

file, and via that included in the auto-generated part of the LIGGGHTS
input script

3

4 variable skin equal ${smoothinglength}*0.25 #// parameter for
neighbor-list builds

5 variable eta equal 0.01*${smoothinglength}*${smoothinglength} #// parameter
for artificial viscosity

6 variable aux equal ${cAB}*${smoothinglength} #// parameter for artificial
viscosity

7 variable alpha equal ${viscosity}/${aux}
8 variable alphatemp equal ${highviscosity}/${aux} #// parameter of
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artificial viscosity in the high-viscosity LIGGGHTS-only equilibration
phase

9 variable zdim equal 0.25*${smoothinglength} #// pseudo-depth for the 2D
case (used for the cell-grid generation only)

10

11 #// parameters for Tait’s equation (see below)
12 variable gamma equal 7.0
13 variable b0 equal ${SPHdensity}*${cAB}*${cAB}/${gamma}
14

15 dimension 2 #// set problem dimensionality to 2D
16 atom_style sph #// use SPH formalism for the particle simulation
17 atom_modify map array sort 0 0
18 communicate single vel yes
19

20 boundary f f p #//use periodic boundary conditions in z-direction
21 newton off #// This command turns Newton’s 3rd law on or off for pairwise

and bonded interactions. For most problems, setting Newton’s 3rd law to on
means a modest savings in computation at the cost of two times more
communication. Whether this is faster depends on problem size, force
cutoff lengths, a machine’s compute/communication ratio, and how many
processors are being used.

22

23 units si #// use SI units
24

25 region reg block ${xmin} ${xmax} ${ymin} ${ymax} -${zdim} ${zdim} units
box #// definition of a region

26 create_box 1 reg #// define the simulation define via above
region

27

28 #// mass 1 ${SPHparticlemass} #is now done in exchange class constructor,
using either SPHparticlemass or a specified mass if passed as an
additional argument

29

30 neighbor ${skin} bin #// set parameter for the neighbor list builds
31

32 #// sph pair style"
33 #// pair_style sph kernel_style h [artVisc alpha beta cAB eta] [tensCorr

epsilon]
34 #// artifical viscosity [Monaghan and Gingold (1983)] and tensile correction [

Monaghan (2000)]
35

36 #// pair_style sph cubicspline_2D ${smoothinglength} artVisc ${alphatemp} 0.
${cAB} ${eta} #tensCorr 0.2 #// cubic spline kernel

37 pair_style sph spiky2D ${smoothinglength} artVisc ${alphatemp} 0. ${cAB} ${
eta} #// specification of spiky kernel and its parameters with high
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viscosity
38

39 #// temporary viscosity in alphatemp >> alpha (mutemp >> mu) for fast
equilibration

40 #// pair_style is reset in the second input script using the actual viscosity
41

42 pair_coeff * * #// use the same interaction between all types of particles (
here only one type, anyways)

43

44 #// definition of SPH fixes
45 #// density
46 fix density all sph/density/continuity #// specification to use the

continuity-approach-based density calculation
47 #// fix density all sph/density/summation #// this would be the

summation density approach
48 fix corr all sph/density/corr shepard every 20 #// apply the Shepard

filter on the density field every 20 time steps
49

50 #// pressure / equation of state
51

52 #// fix id group style type [if Tait: B rho0 gamma] (according to
Monaghan 1994)

53 #// B = c^2*rho0/gamma
54 fix pressure all sph/pressure Tait ${b0} ${SPHdensity} ${gamma}
55

56 #// FSI fix
57 fix fsi all wall/sph_fsi ${SPH_wall_cutoff} ${SPH_wall_equilibriumdist}

${SPH_wall_rep} ${SPH_wall_visc}
58

59 #// time integration
60 fix integr all nve #// use an NVE integrator (constant total energy,

volume and number of particles (microcanonical ensemble))
61

62 #// gravity
63 fix gravi all gravity 9.81 vector 0.0 -1.0 0.0 #// set the vector for

gravitational acceleration in -y-direction
64

65 #// enforce 2D
66 fix enf all enforce2d #//forces the z-component of positions,

velocities, and forces to be 0
67

68 #// output settings, include total thermal energy
69 thermo_style custom step #atoms ke vol cpu #// defines the output style of

simulation data during the running simulation
70 thermo 1 #// output frequency (interval defined in time steps)
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71

72 thermo_modify lost warn #// releases a warning when particles are lost, i.e.
when particles move outside the simulation domain

73

74 #// dump dmp all custom 250 dump2D.sph id type x y z ix iy iz vx vy vz fx
fy fz q density #// specification of the simulation data file output

LIGGGHTS inputscript 2

1 #// this file is read in after equilibration
2 #//every input line here either is additional to LIGGGHTS_input_script_2d or

overwrites/changes commands specified there
3

4 pair_style sph spiky2D ${smoothinglength} artVisc ${alpha} 0. ${cAB} ${eta} #
// overwrite temporary pair style (high viscosity for equilibration) with
pair style with actual viscosity
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6. Example problems and simulations

6.1. Introduction

After the implementation of any numerical approach it is essential to investigate its proper-
ties and performance by means of test simulations and the investigation of simple problems
with existing reference solutions (possibly even analytical solutions), with the focus on sta-
bility and consistency, as well as computational performance. In our case, furthermore, a
number of unknown parameters have been introduced which need to be defined reasonably
in each test example, or ideally, via a standard choice or an approximate analytical expres-
sion (depending on other parameters) applicable in any case. Additionally, the sensitivity
of the system and the resulting numerical solution with respect to those parameters should
be analyzed. It is the iterative process of testing, debugging, the identification of arising
problems – or even, of generally problematic system configurations in the representation
of the respective approach – and the corresponding improvements, which piece by piece
eventually (may) lead to a reliable, stable and consistent formulation and implementation.

To this end, the next subsections contain an outline about the choice of various parameters
and the issue of stability, concludingly followed by three numerical 2D-examples for testing
and verification. The latter simulations were performed on one of two different hard- and
software configurations: The first one has already been discussed in Section 5.1, with an
Intel i7 2720QM CPU (4 real physical cores + 4 cores with hyperthreading) and 8GB
DDR3 RAM; the other consists of actually two machines directly coupled via a real 1
Gbit/s network connection, one with MS Windows XP as operating system for HOTINT,
with an Intel Q6600 CPU, and the other one with a LINUX Ubuntu distribution, powered
by an Intel i7 2600k CPU (as above, 4 physical cores + 4 hyperthreaded cores).

As a side note concerning CPU time and an upper limit of the problem size, with above set-
up it is possible to perform simulations of systems roughly consisting of up to ≈ 100000 SPH
particles and ≈ 10000 surface elements associated with a multibody system represented by
hundreds of degrees of freedom, for a simulated physical time in the range of few seconds
(corresponding to several 100000 time steps) within reasonable time, i.e. several hours up
to several days. Of course, the computational costs actually depend on the very specifics of
the problem itself, such as the size and number of time steps, which components the MBS
consists of, how fast the solver can handle the resulting system of equations of the MBS,
or furthermore, on the convergence or accuracy goals predefined by the user. Hence, above
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example should only be considered as a rough estimate – a reference value for the order of
magnitude.

6.2. Details on the configuration - parameters and stability

As already mentioned in the introduction above, a range of parameters and unknowns come
with this approach – in particular, with the method of SPH, such as the scaling factors of
the fluid-structure interaction forces, the parameters of the artificial viscosity, the kernel
along with the smoothing length, the mass of the SPH particles, or the scalar equation of
state with corresponding parameters. For the configuration of the test examples discussed
here (and all others) the following choices and estimates apply:

• SPH smoothing kernel: Based on the originally implemented cubic spline kernel
in 3D (cf. equation (3.22)), its 2D-version, as well as the spiky kernel for 2D and 3D
were additionally implemented in LIGGGHTS. However, after several test simulations
the cubic spline kernel showed to be problematic, especially in regions close to the
boundaries in states close to equilibrium (almost static states), since there it lead to
numerical divergences. The reason for those problems is the fact that its gradient
∇rjW (ri, rj , h) vanishes when the relative particle distance |ri − rj | approaches zero
(cf. Figure 3.1), which results in vanishing forces due to the pressure (cf. the terms
proportional to pi and pj in equation (3.36)). Because of that, in particular in vicinity
to an equilibrium state with (relative) velocities approaching zero, and thus, vanishing
viscous forces, when two SPH particles get too close to each other, their mutual
repulsion approaches zero, and there is nothing left to keep those particles spatially
seperated. This can (and did) result in an “exact” overlap of particles (meaning
that |ri − rj | becomes smaller than the resolution limit of double precision numbers,
≈ 10−16), leading to divisions by zero in the LIGGGHTS SPH implementation and
thus “NAN”s (“not a number”) in the respective field quantities. Therefore, from that
point on only the spiky kernel was used, which does not produce such instabilities
due to its continuously increasing absolute value of the gradient with decreasing inter-
particle distance (cf. Figure 3.2).

• SPH smoothing length: The constant, universal smoothing length h was chosen
such that the average number of particles within the kernel support domain (support
radius 2h) lay in the range of 50 − 100. Given an average particle distance dav (see
the next point below), h ≈ 1.6 . . . 2.6 · dav for 2D and h ≈ 1.1 . . . 1.4 · dav for 3D.

• Initial particle configuration – mass / density / average distance of SPH
particles: During several test runs, the following procedure performed best: Cre-
ation of an initial particle configuration according to a regular lattice with the lattice
constant d and an additional (optional) random displacement from those reference
positions. The initial average distance between the SPH particles approximately is
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dav ≈ d, thus the associated initial volume is d2
av (d3

av) for 2D (3D), and the cor-
responding mass is set to m = ρ0d

2
av (ρ0d

3
av), based on a constant initial nominal

density ρ = ρ0 for all particles. For some further information on the initial particle
configuration in the context of the equilibration procedure, see also the discussion of
InitializeDataCommunication in Subsection 5.4.2.

• Viscosity: In LIGGGHTS SPH the artificial viscosity according to Monaghan and
Gingold [18] is implemented (cf. equation (3.37)). Here, β = 0, η = 0.1h, and α = ν

hc

(according to equation (3.42)) were used, with the smoothing length h, the speed of
sound c (see the next point below), and the kinematic viscosity ν.

• Equation of state: As already discussed in Subsection 3.2.3, for modelling weakly
compressible fluids, Tait’s equation of state was employed (cf. equation (3.53)), using
γ = 7, the nominal fluid density ρ0 and the speed of sound c which was chosen
approximately 10 times as large as the expected/estimated bulk flow velocity. The
latter should result in maximum density variations in the range of a few percents (cf.
equation (3.54)).

• Density computation: Starting with a given, initial density distribution, the in-
tegral approach based on the continuity equation (cf. equation (3.31)) was used for
the calculation of the density field; additionally, in order to prevent oscillations, a
smoothing filter (“Shepard filter”, see Subsection 3.2.3 for more information) was
applied once every 20-30 time steps.

• Size of the time step: The maximum time step size (for both sides) was chosen
in the range of 10−5 . . . 10−6 s, depending on the bulk modulus (stiffness) of the fluid
which is determined by the speed of sound (cf. the point “Equation of state” above).
As already discussed, this very small step size is due to the explicit integration routines
on the fluid side. As a side note: One useful indicator for a time step size chosen
too large in this implementation are significant (unphysical) variations in the density
field.

• Parameters for the fluid-structure contact force field densities: Here, the
four parameters k (scaling factor of the repulsive force), t (scaling factor of the vis-
cous force), r0 (equilibrium distance) and rc = 2h (the cut-off or interaction range) –
cf. equation (4.2) – have to be determined. In the test simulations, adhesive effects
should not be considered, thus r0 = rc; the cut-off radius rc, apart from the scaling
parameters, significantly determines the stiffness of the contact, since for a given sys-
tem, there exists a lower limit for k in order to retain the “no-penetration” condition
(equation (3.44)), i.e. to keep particles from moving through the boundaries. Hence,
very small values for rc result in very stiff fluid-structure contact, which must be ac-
counted for on the fluid side by using sufficiently small time steps; on the other hand,
the smaller rc becomes, the higher the accuracy of the representation of the actual
boundary shapes gets. Therefore, the choice of rc always is some sort of compromise;
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typical values lie in the range of the SPH smoothing length (or kernel support radius).
Note that, after the definition of rc, the refinement resolution dr also is chosen in that
range (cf. Subsections 5.5.2 and 4.3).
The scaling parameter k – corresponding to a pressure – must be defined individually
in each case, since it heavily depends on the specific problem situation. If the gravita-
tional force is considered, the maximum hydrostatic pressure in the static case, given
by ρ0ghmax (with the maximum “filling height” hmax and nominal density ρ0 of the
fluid, and the gravitational acceleration g ≈ 9.81m/s2) can be used as an estimate
for the lower limit of k. A reasonable choice for k in such cases is that hydrostatic
pressure multiplied by a some factor in the range of 2 − 20, k ≈ 2 . . . 20 · ρ0ghmax.
However, this is only a rule of thumb, and usually some test runs are necessary in
order to find an appropriate value which ideally should be as small as possible (i.e.,
just large enough to prevent the particles from penetrating the boundaries).
Concerning the scaling parameter of the visous force terms, an estimate for a reason-
able value can be calculated based on the assumption that the viscous forces between
two SPH particles i and j, here designated as fvisc,SPH , should be approximately
equal to those between a local boundary point i (from the numerical surface integra-
tion of line segment m) and one SPH particle j, denoted as fvisc,wall (cf. equations
(3.36) and (4.4), as well as (5.5)):

∣∣∣fvisc,SPH ∣∣∣ = mimjΠij · |∇riWij | ≈ m2 ν

ρ

1
h
vij |∇riWij | (6.1)

∣∣∣fvisc,wall∣∣∣ = 1
2 lmwi

∣∣∣fvisc(rj ,vj , rSm,i,vSm,i)∣∣∣ ≈ tvij 1
h
|∇riWij |h5, (6.2)

where again, |4riWij | ≈ |∇riWij | /h was used, and h for all occuring characteristic
distances. Now, from

∣∣∣fvisc,SPH ∣∣∣ ≈ ∣∣∣fvisc,wall∣∣∣ we get

t ≈ m2 ν

ρ

1
h5 , (6.3)

and with m ≈ ρh2 (in 2D) finally
t ≈ νρ

h
(6.4)

with the kinematic viscosity ν and the nominal fluid density ρ ≈ ρ0. Note that above
derivation was done for the 2D case, but can be done for 3D in analogy, yielding with
equation (6.4) an identical final result.

6.3. Volume, density, and weight - a static consistency test

The first thing that was investigated quantitatively was the actual volume (per depth unit)
of a fluid filled into a box in equilibrium. Additionally, the weight force exerted by the
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fluid on the bottom of the box was determined, and the result then should be compared to
the theoretical weight force which is defined exactly by the number of particles and their
constant equal masses, as well as to the weight determined from the measured volume and
the nominal fluid density.

At first, this might seem to be a trivial consideration, but keep in mind that in the formalism
of the meshfree, particle-based method SPH the macroscopic volume, as well as the surface
of the fluid, are not defined exactly. Hence, it should not be assumed a priori that the
simple relation of mass, density, and volume is consistently represented here, even though
it is a very basic requirement for the methods viability.

The test simulation is based on the set-up sketched in Figure 6.1, consisting of the com-
ponents listed below – of course including gravitational force; a snapshot of the simulation
for illustration of the “real” set-up is shown in Figure 6.2:

• Two impervious walls at the side,

• one rectangular rigid body forming the bottom of the box, with a position constraint
for all three of its degrees of freedom (the position of its center of gravity (two coor-
dinates xb and yb), as well as the rotation angle ϕb about the center of gravity),

• a rigid body piston, moving towards the bottom with a constant velocity v0 in −y-
direction, enforced by a coordinate constraint of its x-position xp as well as the ro-
tation ϕp, and a velocity constraint ẏp = v0, with a position sensor to measure the
piston displacement,

• and finally, the fluid (SPH particles) enclosed by those four components of the MBS.

Now, in this case without a LIGGGHTS-only equilibration phase, the piston moves towards
the fluid, and until contact with the SPH particles the average total force on the rigid body
at the bottom corresponds to the weight of the fluid. As soon as the piston starts to
effectively compress the fluid, the measured forces increase rapidly, where the point of this
transition can be used to identify the effective fluid volume actually represented by the SPH
particles. It should be noted that in this example the measurement of the forces in HOTINT
is performed using sensor elements evaluating the Lagrange multipliers corresponding to the
respective kinematic constraints of the rigid bodies (constraint forces, cf. equation (2.2)).

The following parameters were used in the simulation:

• piston thickness a = 0.005m and width b = 0.05m (cf. Figure 6.1)

• initial y-coordinate of the pistons center of gravity: yp(t = 0) = 0.0725m

• constant y-coordinate of the bottoms center of gravity: yb = 0m

• constant piston velocity: v0 = 0.05m/s

• SPH smoothing length: h ≈ 0.000614m

• mass (per depth unit) of SPH particles: m ≈ 0.0001053 kg/m
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Figure 6.1.: Sketch of the test example for the investigation of the relation of mass/vol-
ume/density and weight force of the fluid: The piston moves with constant
velocity v0 in −y-direction, a denotes the thickness of the piston and the
bottom, b the width of the box and h0 the effective equilibrium filling height
of the fluid.

• number of SPH particles: N = 14298

• nominal fluid density: ρ0 = 1000 kg/m3

The sensor data, i.e. the displacement of and total force in y-direction on the piston,
as well as the force (in y-direction) on the bottom, are shown in the Figures 6.3 to 6.5.
Without any LIGGGHTS-only equilibration, significant fluctuations in all quantities can
be observed. This should demonstrate that, if an initial situation close to equilibrium of
the fluid is required and/or important, a preceeding equilibration process is essential. In
this case, however, we can still use the average value of the weight force (Figure 6.5) as a
good approximation for its equilibrium value F0, as well as determine the point (simulation
time tc) of the onset of effective compression of the fluid by the piston from Figure 6.4 (and
then from Figure 6.3, or via v0, the effective equilibrium filling height h0) with sufficient
accuracy.

Based on the obtained simulation data, the equilibrium filling height h0 is given by

h0 = yp(0)− 1.5a−4yp ≈ 0.034m (6.5)

with the piston displacement 4yp at the compression limit. Since the scaling parameter for
the repulsive fluid-structure contact force was chosen very high in this example (allowing for
test simulations with high compression of the fluid), thus resulting in a very high contact
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Figure 6.2.: A snapshot of the dynamic simulation of this experimental set-up at t =
0.549 s for further illustration (cf. also the sketch in Figure 6.1), where the
colors correspond to the density field of the fluid. As expected, the density
slightly increases towards the bottom, however, in immediate vicinity of the
boundaries some irregularities are observed originating from too stiff fluid-
structure contact, i.e. too small interaction range and/or too large force
scaling parameters.
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Figure 6.3.: Piston displacement (absolute value) in −y-direction versus simulation time;
tc ≈ 0.62 s is the time at which the compression limit (effective compression
of the fluid by the piston) is reached (cf. Figure 6.4), with a corresponding
displacement of 4yp = v0tc = 0.031m. Moreover, sensor data like this can
be conveniently used to double-check if the system behaves as it should, i.e.,
in this case, a linear relation between the displacement and simulation time.
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Figure 6.4.: Total force on the piston due to the interaction with the fluid in y-direction
versus simulation time; from this, tc – the time at which the compression limit
(effective compression of the fluid by the piston) is reached – was determined
as tc ≈ 0.62 s. From that point on, significant oscillations of the force due to
oscillations of the fluid density field can be observed, which originate from
the non-equilibrium initial state as well as from the impact of of the piston
on the fluid.
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Figure 6.5.: Weight force (y-direction) of the fluid acting on the rigid body on the bottom
versus simulation time; tc ≈ 0.62 s is the time at which the compression limit
(effective compression of the fluid by the piston) is reached (cf. Figure 6.4).
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stiffness, for the calculation of the effective volume accessible for the SPH particles in a
state of equilibrium we do not use h0b, but a corrected value via the smoothing length,

V ≈ (h0 − 2h)(b− 2h) ≈ 0.001598m3/m, (6.6)

yielding an absolute value of the total weight force (per depth unit) of

F Vweight ≈ ρ0V g ≈ 15.68N/m (6.7)

of the fluid, where g = 9.81m/s2 and ρ0 was used as average density considering the
weak compressibility. The averaged value for this weight force determined from the sensor
data (cf. Figure 6.5) via an average over all full oscillation periods within the interval
0.25 s ≤ t ≤ 0.6 s was obtained as

F sensorweight ≈ 15.42N/m, (6.8)

where the identification of those full periods was performed using a the mean value over
the whole time interval as preliminary average for F sensorweight . For comparison, the exact value
is given by

F exactweight = Nmg ≈ 15.43N/m, (6.9)

which finally yields
F Vweight/F

exact
weight ≈ 1.0159 (6.10)

F sensorweight /F
exact
weight ≈ 0.999. (6.11)

Thus, with relative errors in the low percent or sub-percent range, the method produced
consistent results in this static test example for the effective fluid volume as well as the
corresponding weight force.

6.4. Laminar flow around a cylinder

As one example of classic problems in fluid dynamics, the investigation of the laminar flow
around a cylinder was chosen mainly to verify the fluid side of the developed approach, i.e.
the results produced by LIGGGHTS SPH. To this end, a reference solution was generated
with a classical finite volume simulation, using the solver ANSYS Fluent 6.3 with a 2D
mesh generated in Gambit; some further details follow below.

The system set-up for HOTINT/LIGGGHTS, outlined and sketched in Figure 6.6, consists
of

• a surrounding box of width b = 0.20m (effective width: b̃ ≈ 0.18m, cf. explanation
below in the text) partly filled with fluid (9048 SPH particles, generated on a regular
grid with small random displacements),
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Figure 6.6.: Sketch of the system set-up: The piston smoothly is accelerated to a constant
velocity v0 = 0.1m/s in y-direction, and moves the fluid along the channel
of width b = 0.2m (effective width b̃ ≈ 0.18m, see text for details) past the
cylinder (radius r ≈ 0.014m); in the symmetry plane, here given by the x-
axis, 13 sensors for measurement of the fluid velocity – to be exact, of the
spatial average over the velocities of all those particles which lie within a
distance of 2h (h... SPH smoothing length) to the respective sensor – were
placed equidistantly along the line from left to right. All components of the
multibody system are rigid and, except for the piston, static (fixed to the
ground); gravity was included (−y-direction).

• a cylinder with effective radius r ≈ 0.014m in the center, and, for the generation of
a flow past that cylinder against the gravity field,

• a piston which is accelerated smoothly from 0 to the afterwards constant velocity v0 =
0.1m/s in y-direction during the first second of the simulation, initially positioned
0.64m below the center of the cylinder, and

• 13 sensors at equidistant positions on the x-axis over the cross section which measure
the fluid velocity in y-direction, spatially averaged over all particles within a distance
of 2h (with the SPH smoothing length h) to the respective sensor.

Consequently, the geometry of the simulation domain for the finite volume reference solution
was box-shaped, with b̃ ≈ 0.18m width, and 0.7m height, with a cylinder of equal radius
r ≈ 0.014m in the center. Instead of the piston, a Dirichlet boundary condition of constant
velocity v0 = 0.1m/s in y-direction at the bottom of the box was specified, along with a
constant pressure (ambient pressure) at the boundary on the opposite side. Concerning the
solver configuration, second-order algorithms were used for both the upwind scheme for the
convective terms as well as pressure interpolation, together with the SIMPLE algorithm
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for the decoupled computation of the pressure and velocity field. The (static) finite volume
mesh was generated in Gambit, using a total of 1808 quadrilateral cells

The fluid parameters on both sides – the coupled HOTINT/LIGGGHTS simulation as well
as the reference finite volume simulation – are given by

• the nominal density ρ0 = 1000 kg/m3, and

• a kinematic viscosity of ν = 10−3 m2/s,

including the gravitational force.

With the flow velocity at the inlet, corresponding to the stationary piston velocity, and the
diameter of the cylinder the Reynolds number of the problem is given by

Re = 2v0r

ν
≈ 2.8, (6.12)

which leaves us with a non-separated, laminar flow situation. For the latter, Re = 5 would
be the limit; in the range 5 ≤ Re ≤ 40 spatially fixed symmetrical vortices develop behind
the cylinder, followed by the formation a laminar vortex street for 40 ≤ Re ≤ 200 and the
transition to turbulence in the wake at 200 ≤ Re ≤ 300 [55].

Note that above “effective” dimensions were introduced in order to account for the – in
this case – relatively large interaction range of the repulsive fluid-structure contact force,
given by rc = 2.5h with the SPH smoothing length h ≈ 0.0088m, which, together with the
specified force scaling parameter, results in additional space of approximately 0.1m (≈ h)
between the SPH particles and the boundaries in the quasi-stationary state. In other words,
the boundaries effectively generated on the fluid side are expanded in all directions by that
distance. The reason for the choice of a large interaction range was to produce a less stiff
fluid-structure contact which turned out to be essential for consistent results, particularly
in the vicinity of the boundaries. If the contact is too stiff, the SPH particles tend to form
a dense line adjacent (parallel) to the side walls which then is forced to move with the same
velocity as the piston, thus compromising the no-slip condition. Furthermore, this effect is
the source of significant perturbations, generated each time one particle jumps out of such
a line.

The results of the simulation as well as a comparison with the reference solution are shown
and briefly discussed in the Figures 6.7 to 6.9.

Even in the quasi-stationary state after the smooth acceleration phase of the piston –
with a thorough preceeding LIGGGHTS-only equilibration – the velocity field of the fluid
in the dynamic HOTINT/LIGGGHTS SPH simulation exhibited significant fluctuations
(cf. Figure 6.7). The direct comparison of the velocity profile with the result from the
finite volume reference simulation (Figure 6.9) shows consistency within an error range of
approximately 5− 10% for the time-averaged sensor data.
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Figure 6.7.: Fluid velocity in y-direction versus simulation time, measured at the point
(−0.05m, 0m) by the fourth sensor from the left, and spatially averaged over
a circular domain of radius 2h (with the SPH smoothing length h). After the
acceleration phase of the piston (t ≤ 1 s), a quasi-stationary state is reached,
with relative fluctuations in the range of 10%.

 

      

Figure 6.8.: Qualitative comparison of the velocity field in y-direction around the cylinder
obtained from the coupled HOTINT/LIGGGHTS SPH simulation at t =
4.928 s with in total 9048 SPH particles (left-hand side) and a standard finite
volume simulation using the solver ANSYS Fluent 6.3, based on a 2D mesh
with 1808 quadrilateral cells (right-hand side). More information on the latter
is given in the text; for a quantitative comparison, cf. Figure 6.9.
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Figure 6.9.: Profile of the fluid velocity in y-direction in the symmetry plane, i.e. on the x-
axis (cf. Figure 6.6). The red line corresponds to the interpolated data points
(also plotted red) obtained from a standard finite volume simulation using
the solver ANSYS Fluent 6.3, based on a 2D mesh with 1808 quadrilateral
cells (more information on that is given in the text), whereas the blue markers
correspond to the time average over the time interval 2 . . . 6 s of the sensor
data obtained from the coupled HOTINT/LIGGGHTS SPH simulation, with
the respective error bars (cf. also Figure 6.7).
We can see an acceptable agreement of the results from the method developed
in this work and the reference finite volume solution with deviations in the
range of 5− 10%, however, it should be noted, that this example is generally
problematic – particularly in 2D (see text for details). Further improvements
of the accuracy could be achieved by the calculation of the actual value of
the velocity field at the sensor positions according to the SPH interpolation
(cf. equation (3.12)) – which has not been implemented yet – instead of the
simple averaging process over all particles within a distance of 2h (h... SPH
smoothing length) to the respective sensor.
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In general it can be stated that this specific example comes with several difficulties with
the present method, in particular in two dimensions. As discussed above, the choice of
appropriate values for the contact force scaling parameters and the corresponding interac-
tion range is crucial and must also be considered in the original design of the geometry of
the problem due to the possibly relatively large additional space between the fluid and the
boundaries. In context with the latter, the problem of “stacking of particles” along the side
walls and the resulting errors in the velocity field in vicinity to the respective boundaries
is certainly more significant in 2D than it would be in 3D, since the freedom of movement
of the SPH particles here is much more restricted.

Another thing worth mentioning concerns the equal size of all particles in the present
implementation: Consider a set of hard spheres of perfectly equal size, and compare the
dynamics those spheres exhibit when moving in a plane, for instance, with grains of sand
of equal size in average. Due to the high symmetry of the spheres, in particular in cases
of regular spatial distribution (e.g. according to some kind of lattice), some directions
of motion are preferential, or, in other words, the “environment” for each particle is an
anisotropic one. This anisotropy is realistic in case of hard spheres, but in the context of
SPH particles – representing an isotropic fluid – clearly undesirable. Of course, the SPH
particles are not exactly hard spheres, but nevertheless they have spherical symmetry and,
with equal smoothing lengths, effectively equal size, which is the reason why the initial
particle configuration was generated based on a regular grid with random displacements.
Using a regular distribution at the beginning, the configuration may stay partly in that
state even when the flow is fully developed, in particular in the region before the cylinder,
bringing forward above, for the representation of a fluid unphysical anisotropic effects.

And last, but not least, it is also problematic to obtain a symmetric solution in this sym-
metric example, due to small fluctuations especially in the velocity field, which still remain
to some extent even after a long equilibration procedure, and lead to (non-symmetric)
perturbances. In such cases of very sensitive examples improvements of the equilibration
process probably would be necessary, maybe by the use of smoothening techniques or the
introduction of some kind of additional (artificial) dissipation.

All in all, with this example consistency of the method could be shown for the fluid side by
comparison to a reference solution, even though several problems arised causing considerable
drawbacks compared to standard methods (FVM). Actually, in this case there would be
no need for a fully coupled flexible treatment – the problem at hand is, in fact, a classical
example to be solved numerically by means of the finite volume method – but, as we
have seen, it is always very informative from a developers perspective to investigate how a
method performs in less compatible or suitable situations. Investigations of this kind not
only serve as quantitative verification, but also provide insights which further improvements
and extensions may be based on.
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6.5. Pump-driven channel flow with two valves

Without any quantitative analysis, this test example just shall be an illustration of the
potential of the developed approach in application to a slightly more complex multibody
system consisting of

• a closed channel system guiding a circular flow, driven by a

• piston pump, and passively controlled by one

• rigid body valve connected with a non-linear spring to the ground, and one

• flexible valve modelled by a 2D ANCF beam element, also with an additional spring
actor element.

Gravitational force was also included; the simulation was performed with 35000 SPH
particles (fluid parameters: nominal density ρ0 = 1000 kg/m3, kinematic viscosity ν =
10−3 m2/s). For a sketch of the system configuration with a short outline of its mechan-
ics see Figure 6.10. The initial state after the equilibration procedure is shown in Figure
6.11, whereas the sequence of video frames in the Figures 6.12 and 6.13 should capture the
dynamics of the system.

For some more advanced examples which were investigated and simulated based on a 3D
implementation of the formalism – both outside the scope of this work – see the final
remarks and outlook in the following, last chapter.
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rigid-body valve 

elastic valve (ANCF beam 
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piston 
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Figure 6.10.: Sketch of the system configuration: The piston is moving oscillatory in x-
direction and pumping fluid in clockwise direction, where the rigid-body
valve, connected to the frame (ground of the MBS) via a revolute joint,
acts as an inlet valve, and the elastic valve, modelled by a 2D ANCF beam
element, represents an outlet valve. The (non-linear) spring actor elements
are used as passive control elements, with their equilibrium positions in the
state where both valves are closed. Spring actor 1 is associated with a high
tensile stiffness in +x-direction, thus ensures that no fluid can flow through
the elastic valve from left to right, while spring actor 2 is exerts an additional
force in −y-direction on the tip of the rigid body valve in case of compres-
sion, preventing any mass flux in the +y-direction in the compression phase
(piston movement in −x-direction); the third actor element just supports
the intake process of the fluid in the expansion phase (piston movement in
+x-dircetion). Gravitational force is included (−y-direction).

117



CHAPTER 6. EXAMPLE PROBLEMS AND SIMULATIONS

Figure 6.11.: The state of the system at t = 0.01 s after the equilibration procedure,
which was performed with a partly opened rigid body valve in order to fill
the whole geometry uniformly, including the piston chamber. The color of
the fluid (SPH particles) corresponds to the absolute fluid velocity (cf. the
legend at the left-hand side).
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t = 0.12 s t = 0.18 s

t = 0.24 s t = 0.30 s

t = 0.36 s t = 0.42 s

Figure 6.12.: Sequence of video frames of the simulation in equidistant time intervals of
4t = 0.06 s, starting from t = 0.12 s simulation time; for a legend of the fluid
color corresponding to the absolute fluid velocity, cf. Figure 6.11. In the
compression phase, the elastic outlet valve undergoes a large deformation
due to the interaction with the fluid, corresponding to the pressure on the
valves surface. The sequence of frames is continued in Figure 6.13.
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t = 0.48 s t = 0.54 s

t = 0.60 s t = 0.66 s

t = 0.72 s t = 0.78 s

Figure 6.13.: Sequence of video frames of the simulation in equidistant time intervals of
4t = 0.06 s, starting from t = 0.48 s simulation time; for a legend of the
fluid color corresponding to the absolute fluid velocity, cf. Figure 6.11.
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7.1. Outlook

Outside the scope of this master thesis, based on the discussed implementation in 2D, a full
3D implementation has been developed and still is being extended, refined, and tested on
varying example problems (note: the C++ source code in the appendix also includes major
parts of that additional implementation). The key points and challenges for the extension
from two to three spatial dimensions lie, firstly, in the definition, creation, implementation
and treatment of arbitrary complex 3-dimensional boundaries, including the surfaces of
arbitrarily shaped, moving and deforming 3D objects – on the side of both HOTINT and
LIGGGHTS – and, secondly, in data management and issues of optimization and efficiency,
as well as visualization.

A short recap of the approach developed in this work – its benefits and problems – as
well as a discussion on possible future extensions and improvements is given the next (and
last) section. Concludingly, for illustration of the current state, simulations results of one
advanced 2D and two 3D examples shall be presented here in short:

• 2D simulation of a tuned liquid column damper attached to a flexible structure mod-
elled by an ANCF beam element. Some results are shown in the Figures 7.1 and
7.2.

• 3D simulation of a flexibly mounted axial pump with a rigid body 5-blade rotor
geometry. Numerical data (sensor data) and a few snapshots are shown in the Figures
7.3 to 7.5.

• 3D simulation of fiber-fluid interaction with an array of thin, highly flexible fibers
consisting of two large-deformation ANCF beam elements each. See the Figures 7.6
to 7.10 for simulation results.

Note: In all three cases the gravitational force was included.
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Figure 7.1.: A U-shaped tuned liquid column damper on the top of a building modelled
by one 2D ANCF beam element (pictured in blue); the colors of the SPH
particles correspond to the absolute fluid velocity.

Figure 7.2.: Investigation of the damping behavior: The beam was deflected by a linear
increasing initial force (0 ≤ t ≤ 10 s), and then released. The red curve
corresponds to the motion of the beam tip without fluid in the damper, the
decaying black curve to the deflection with the filled tuned liquid column
damper, versus simulation time.
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Figure 7.3.: Cut through the outer geometry without SPH particles, uncovering the
flexibly-mounted rotor (blue) and the drive shaft/train (yellow/red, just for
illustration).

Figure 7.4.: Cut through the geometry during the pumping process, with an effective mass
flux from right to left generated by a forced clockwise rotation of the rotor;
the color corresponds to the absolute fluid velocity.
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Figure 7.5.: Movement (trajectory) of the center of the rotor about its mounting point,
i.e. its initial position rcenter(t = 0) = (0, 1, 0) in the yz-plane; the rotation
axis as well as the main flow direction generated by the pump here is parallel
to the x-axis.

Figure 7.6.: Cut through the geometry shortly after the initial setting, with the fluid
flowing from the upper left-hand side through the array of flexible fibers in
the center (in blue, modelled by two ANCF beam elements per fiber) into
the box on the lower right-hand side.
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Figure 7.7.: Cut through the geometry with the fully developed flow, using a very high
stiffness for the beam elements (almost rigid case).

Figure 7.8.: A closer look at one half of the fibers in interaction with the fluid, using highly
flexible beam material; only a fraction of the SPH particles is shown with
velocity vectors scaled and colored according to the absolute fluid velocity.
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Figure 7.9.: Absolute fluid velocity measured with a sensor placed on a central position in
front of the fibers versus simulation time, for different material parameters:
Low (very high) viscosity νlow (νhigh), and low (very high) stiffness of the
beam elements Elow (Ehigh). Red curve: νhigh, Ehigh, black curve: νhigh,
Elow, blue curve: νlow, Ehigh, green curve: νlow, Elow.

Figure 7.10.: Sensor data of the deflection of the fiber tips, for the first row of fibers
parallel to the back wall, in x-direction (i.e. the flow direction) versus
simulation time. The black line corresponds to the beam reached by the
fluid first, then the others follow subsequently with increasing x-coordinate
of their mounting position.
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7.2. Conclusions

Starting from, and with focus on the mechanical side, the objective of this work was the de-
velopment of a method to include a general viscous fluid in simulations of flexible multibody
system dynamics. At that, the structural side – the wide range of possible configurations
and problem situations in MBD – determined the requirements of the fluid side, demanding
the following key capabilities:

• Handling of arbitrary geometries, or, in other words, applicability to any MBS, re-
gardless of the state of motion and/or deformation of the components of the MBS,

• performance and efficieny, and

• stability as well as consistency of the fluid simulation.

Considering the first requirement in particular, the use of a meshfree model for the repre-
sentation and simulation of the fluid is the most promising choice, as already mentioned in
the introduction. With the direct coupling of flexible multibody dynamics and smoothed
particle hydrodynamics, an unconventional approach to the problem of fluid-structure in-
teraction was developed, the underlying theory as well as the implementation of which have
been discussed in the previous chapters, concluded by the simulation and investigation of
several 2D example problems. To that end, with HOTINT on the multibody side and
LIGGGHTS for the fluid simulation, two powerful tools featuring extensive capabilities
and functionality on their respective fields have been coupled in an efficient and flexible
way based on the introduction of a server-client relation and a definition of an interface.

All in all, the main advantages of this approach are its applicability to arbitrary multibody
systems consisting of arbitrarily moving and/or deforming bodies, and the very accurate
modelling of the structural components. Moreover, high performance is given due to the
advanced and efficient methods of MBD implemented in HOTINT on the one hand, and to
the fast algorithms used in many-particle simulations and the field of molecular dynamics,
as well as the possibility of massively-parallel computation of LIGGGHTS on the other
hand. For sufficiently small time steps the coupled simulation is stable and produces con-
sistent, accurate results, where the latter, however, can be difficult on the fluid side, even
in case of certain simple problems which can be solved easily and very accurately by means
of classical methods, for instance, the finite volume method (cf. the simulation of the lam-
inar flow around a cylinder in Section 6.4). Hence, the main field of application for this
fully coupled MBD/SPH approach are problems with a complex structural side and highly
flexible components undergoing large motion and/or deformation, possibly including free
surface flows.

Of course, it should be noted that there are still many difficulties, which have – with respect
to the present coupling approach – either arised during test runs of certain simulations, or
are well-known anyways, particularly concerning the method of SPH itself. Amongst those
problems are
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• an accurate computation of the fluid properties in the vicinity of boundaries (espe-
cially in 2D), along with

• an appropriate choice for the (scaling) parameters of the fluid-structure contact forces
(in particular, for the repulsive force) or the artificial viscosity terms,

• the process of equilibration,

• significant fluctuations/oscillations in certain fluid field quantities, especially in case
of a (quasi-)stationary state,

• the implementation of other fluid boundary conditions (e.g. a Dirichlet condition for
the velocity field at a velocity inlet), and

• stability issues, in particular with respect to the LIGGGHTS-sided non-adaptive,
explicit time integration without convergence or consistency tests, which not only is
problematic for the fluid simulation itself, but can also affect the mechanical side (e.g.
a too large time step size for the fluid simulation can result in artificial, mechanical
instabilities of interacting flexible structures).

Note that several of above points were also encountered in the basic “laminar flow around
a cylinder” example discussed in Section 6.4. However, none of these problems are a priori
insoluble, and after all, there is a lot of optimization potential. The following list outlines
some possibilities for a further increase of efficiency and performance:

• A full distributed-memory implementation of the handling of the discretized surfaces.
Currently, all processes operate on identical copies of the interface data set; clearly,
it would be ideal to use a similar, efficient strategy as in the case of the SPH particles
by considering and managing only that part of the boundaries which lies within the
respective subdomain of each process; also, a shared-memory-like approach based on
only one mutually accessed interface data set could be another option.

• The implementation of a more efficient surface definition. Currently – even though the
interface itself is node-based – all surface elements, also connected ones with mutual
vertices, are defined independently, i.e. the full number of vertices of each element
is read in individually, resulting in redundant information (which is, roughly, by a
factor of 2 in 2D and 3 in 3D larger than the essential data size).

• The use of different time step sizes on both sides, with corresponding interpolation
schemes for the forces on the structural side, and, importantly, the positions and
velocities of the boundary elements for the fluid simulation. In the current imple-
mentation, the time step size is controlled by HOTINT, but must be limited to very
small values (typically in the range of 10−5-10−6 s) due to the explicit integration
routines LIGGGHTS-sided, which is by a factor of 10-1000 smaller than necessary for
the integration of the multibody system. This would increase efficiency, and elimi-
nate the possibility of a TCP/IP bottleneck, since then all data – not only the SPH
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information – would only be exchanged in intervals of 100s or even 1000s of time
steps.

Concerning the stability, some options for improvements would be

• an adaptive step-size control in LIGGGHTS, and/or

• communication and synchronization of information on the current state of conver-
gence, or

• the implementation of other time integration schemes for the fluid simulation.

Additional enhancements could be possible by the use of an enhanced equilibration proce-
dure, of other strategies for the numerical integration in the computation of the contact
forces and the corresponding mesh refinement, modified smoothing kernels, and certainly
by advanced implementations of the SPH formalism – with respect to both accuracy and
stability on the fluid side. It should be noted that the SPH implementation in LIGGGHTS
used for this work (retrieved in October, 2011) is a rather basic one, based on one type of
identical particles with one smoothing kernel and constant parameters only. For more infor-
mation about advanced methods, aiming for higher stability, smoother results, an efficient
handling of multi-scale problems requiring different spatial resolutions (i.e. different “sizes”
of particles – given by the mass and average distance of the particles, hence also connected
to the smoothing lengths of the corresponding kernel functions), or more accurate results
in boundary regions, refer to the respective literature and the current research in the field
of SPH (e.g. the proceedings of the SPHERIC conference 2011 [42], and the references
therein).
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A. C++ source code

A.1. interface_baseclass

1 #ifndef INTERFACEBASECLASS
2 #define INTERFACEBASECLASS
3

4 class interface_baseclass{
5

6 protected:
7

8 //all counting starts from 0
9 double* _r; // global positions of boundary particles; coord j of particle i

is given by r(i,j); set coord to d by setr(i,j,d)
10 double* _v; // global velocites of boundary particles; component j of

particle velocity i is given by v(i,j); set vel to d by setv(i,j,d)
11 double* _f; //forces on boundary particles; f(i,j), setf(i,j,double)
12 unsigned int* _el; // el(m,j) contains number of point j (j=0..1 2D, 0...2 3

D) of surface element m
13 //(line segment in 2D, triangle in 3D); setel(m,j,val);
14 double* _rSPH; //global positions of SPH particles; rSPH(i,j), setrSPH(i,j,

double);
15 double* _vSPH; //global velocities of SPH particles; vSPH(i,j), setvSPH(i,j,

double);
16 double* _rohSPH; //densities; rohSPH(i) returns desity of particle i
17 double dt; //current size of timestep
18

19 int refinement_option; //for 3D: 0...no refinement, 1... recursive
refinement based on original triangles in every time step, 2... pre-
refined mesh, no additional refinement in time-stepping, 3... as 1, but
based on pre-refined mesh

20 //default is 1; 2D is always 1
21 double dr; //refinement depth / resolution - mesh is refined in 2D (3D)

until any line element (edge of a triangle) is shorter than dr
22

23 public:
24

25 unsigned int n; //number boundary points
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26 unsigned int nstat; //number of boundary points which are assumed to be
static points (boundaries fixed to ground)

27 //points with numers 0...(n-nstat-1) are treated as regular dynamic points,
points with numbers n-nstat...n-1 are treated as static points, i.e.
corresponding r and v is only exchanged in initialization; by default,
nstat=0 (i.e., all points receive full data transfer)

28

29 unsigned int nSPH; //number of SPH particles
30 unsigned short dim; // 2 for 2D, 3 for 3D; used for el array, coordinates

always 3D (in case of 2D: 0 z-component)
31 unsigned int nel; //number of surface elements
32

33 virtual void getrv(){}; //receive r and v (the dynamic part, cf. nstat)
34 virtual void sendrv(){}; //send r and v (the dynamic part, cf. nstat)
35 virtual void getrvfull(){}; //recv r and v (dynamic and static)
36 virtual void sendrvfull(){}; //send r and v (dynamic and static)
37 virtual void getrSPH(){}; //receive rSPH
38 virtual void getvSPH(){}; // receive vSPH
39 virtual void sendrSPH(){}; //send rSPH
40 virtual void sendvSPH(){}; //send vSPH
41 virtual void sendforce(){}; // send f (only for non-static elements)
42 virtual void getforce(){}; //receive f (only for non-static elements)
43 virtual void getrohSPH(){}; //receive rohSPH
44 virtual void sendrohSPH(){}; //send rohSPH
45

46 virtual ~interface_baseclass(){};
47

48 inline double r(int i, int j) {return _r[i*3+j];} //return coordinates /
velocity components / force components

49 inline double v(int i, int j) {return _v[i*3+j];}
50 inline double f(int i, int j) {return _f[i*3+j];}
51 inline double* rp(int i) {return _r+3*i;} //return pointers to i-th

coordinate/vel/force vector
52 inline double* vp(int i) {return _v+3*i;}
53 inline double* fp(int i) {return _f+3*i;}
54 inline double rSPH(int i, int j) {return _rSPH[i*3+j];}
55 inline double vSPH(int i, int j) {return _vSPH[i*3+j];}
56 inline unsigned int el(int i, int j) {return _el[i*dim+j];}
57 inline unsigned int* elp(int i, int j) {return _el+i*dim+j;} //returns

pointer to element (i,j)
58 inline void setr(int i, int j, double d) {_r[i*3+j]=d;}
59 inline void incr(int i, int j, double d) {_r[i*3+j]+=d;}
60 inline void setv(int i, int j, double d) {_v[i*3+j]=d;}
61 inline void incv(int i, int j, double d) {_v[i*3+j]+=d;}
62 inline void setf(int i, int j, double d) {_f[i*3+j]=d;}
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63 inline void incf(int i, int j, double d) {_f[i*3+j]+=d;}
64 inline void setrSPH(int i, int j, double d) {_rSPH[i*3+j]=d;}
65 inline void setvSPH(int i, int j, double d) {_vSPH[i*3+j]=d;}
66 inline void setel(int i, int j, unsigned int x) {_el[dim*i+j]=x;}
67 inline void zerof() {for(int i=0; i<3*n; ++i) _f[i]=0.0;}
68 inline void zeror() {for(int i=0; i<3*n; ++i) _r[i]=0.0;}
69 inline void zerov() {for(int i=0; i<3*n; ++i) _v[i]=0.0;}
70 inline void zerorSPH() {for(int i=0; i<3*nSPH; ++i) _rSPH[i]=0.0;}
71 inline void zerovSPH() {for(int i=0; i<3*nSPH; ++i) _vSPH[i]=0.0;}
72 inline double rohSPH(int i) {return _rohSPH[i];}
73 inline void setrohSPH(int i, double d) {_rohSPH[i]=d;}
74 inline void zerorohSPH() {for(int i=0; i<nSPH; ++i) _rohSPH[i]=0.0;}
75 inline void set_refinement_option(int r){refinement_option=r;}
76 inline int get_refinement_option(){return refinement_option;}
77 inline void set_dr(double r){dr=r;}
78 inline double get_dr(){return dr;}
79

80 };
81

82 #endif

A.2. dn.h

1 #ifndef DOUBLE_TO_NETWORK
2 #define DOUBLE_TO_NETWORK
3

4 //Berechnung der Parameter einer double d in der Darstellung m*2^exp mit 0.5<
|m| <1, sign in m schon enthalten

5 //und exp eine ganze Zahl;
6 //|m| wird als 2*8 Dezimalstellen in 2 unsigned ints (4 Bytes) a1 (digits

1...8) und int a2 (digits 9...16) gespeichert;
7 //dafür (ganze Zahl <= 10^9) sind 30 bits notwendig;
8 //|exp| kommt in ein unsigned short (2 Bytes); das VZ von m kommt aufs msb von

a1 (0 für +, 1 für -), das von exp aufs msb von a2
9 // Umwandlung und Rückumwandlung über htons/l bzw. ntohs/l, und entsprechendes

& für die VZ
10

11 //host to network double
12 //d ist die umzuwandelnde double, a1,a2,exp beinhalten dann die Information im

Netzwerkbyteorder
13 void htond(double d, unsigned int & a1, unsigned int & a2, unsigned short &

exp);
14 //Rückumwandlung
15 //network to host double
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16 //gibt die umgewandelte double zurück, a1,a2,exp beinhalten die Darstellung in
Netzwerkbyteorder

17 double ntohd(unsigned int a1, unsigned int a2, unsigned short exp);
18

19 //gleiche Funktionalität wie zuvor, nur wird in einen char-Array reservierten
Speicher geschrieben;

20 //Möglichkeit zur sequentiellen Verabreitung von doubles (via double Arrays)
bzw 2-fach indizierten double Arrays double**

21 //char muss Dimension 10*n haben (da jede Double umgewandelt 10 Bytes
entspricht); n...Anzahl der umzuwandelnden doubles = Länge des arrays d*;
Ergebnis sequentiell in x

22 void htond(char* x, double* d, int n);
23 void ntohd(char* x, double* d, int n);
24

25 //Umwandeln und Austauschen eines n x k double Arrays
26 //char muss Dimension 10*n*k haben (da jede Double umgewandelt 10 Bytes

entspricht);
27 //double ** ist ein Array mit Dimensionen n x k; Daten sequentiell in x;
28 void htond(char* x, double** d, int n, int k);
29 void ntohd(char* x, double** d, int n, int k);
30

31 //Umwandeln und Senden eines 1-d double Arrays der Länge n*k in ein n x k
double Array

32 //char muss Dimension 10*n*k haben (da jede Double umgewandelt 10 Bytes
entspricht);

33 //double * ist ein Array mit Länge n*k; Daten sequentiell in x (hier
zurückwandelbar mittels ntohd(char*, double**, int n, int k))

34 //Zuordnung zwischen 1-d n*k und 2-d n x k Array: d_2d[i][j] = d_1d[i*k+j]
35 void htond12(char* x, double* d, int n, int k);
36

37 //Rückumwandlung eines n x k double Arrays in ein 1-d Array der Länge n*k
38 //char muss Dimension 10*n*k haben (da jede Double umgewandelt 10 Bytes

entspricht);
39 //double * ist ein Array mit Länge n*k; Daten sequentiell in x, dort

zurückwandelbar mittels ntohd(char*, double**, int n, int k)
40 //Zuordnung zwischen 1-d n*k und 2-d n x k Array: d_2d[i][j] = d_1d[i*k+j]
41 void ntohd21(char* x, double* d, int n, int k);
42

43 #endif

A.3. dn.cpp

1 #include <math.h>
2 #include <winsock2.h> // für htons etc // WICHTIG: beim Linker unter zus.

Abhängigkeiten: ws2_32.lib einbinden!!
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3

4 void htond(double d, unsigned int & a1, unsigned int & a2, unsigned short &
exp){

5

6 double m;
7 int temp;
8

9 m=frexp(d,&temp); //m ist die Mantisse, temp der Exponent
10

11 if(m>=0 && temp>=0){
12 exp = (unsigned short) temp; //Exponent zur Basis 2
13 a1 = (unsigned int)1E8*m; //Digit 1 bis 8 von m + VZ von m
14 a2 = (unsigned int)(1E8*(m*1E8-a1)); //Digit 9-16 von m + VZ von exp
15 }
16 else if(m>=0 && temp<0){
17 exp = (unsigned short) -temp; //Exponent zur Basis 2
18 a1 = (unsigned int)1E8*m; //Digit 1 bis 8 von m + VZ von m
19 a2 = ((unsigned int)(1E8*(m*1E8-a1))); //Digit 9-16 von m
20 a2 |= 0x80000000; // VZ von exp
21 }
22 else if(m<0 && temp>=0){
23 exp = (unsigned short) temp; //Exponent zur Basis 2
24 a1 = ((unsigned int) (-1E8*m)); //Digit 1 bis 8 von m
25 a2 = (unsigned int)(-1E8*(m*1E8+a1)); //Digit 9-16 von m + VZ von exp
26 a1 |= 0x80000000; //VZ von m
27 }
28 else { //(m<0 && temp<0)
29 exp = (unsigned short) -temp; //Exponent zur Basis 2
30 a1 = ((unsigned int) (-1E8*m)); //Digit 1 bis 8 von m
31 a2 = (unsigned int)(-1E8*(m*1E8+a1)); //Digit 9-16 von m
32 a1 |= 0x80000000; //VZ von m
33 a2 |= 0x80000000; //VZ von exp
34 }
35

36 //Umwandlung in Netzwerk-Byteorder
37 a1 = htonl(a1);
38 a2 = htonl(a2);
39 exp = htons(exp);
40 }
41

42 double ntohd(unsigned int a1, unsigned int a2, unsigned short exp){
43

44 double m;
45 m = ntohl(a1) & 0x80000000 ? -((ntohl(a2)& 0x7FFFFFFF)*1E-16+(ntohl(a1) & 0

x7FFFFFFF)*1E-8) : (ntohl(a2)& 0x7FFFFFFF)*1E-16+ntohl(a1)*1E-8;
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46 return ntohl(a2) & 0x80000000 ? ldexp(m,-(int)(ntohs(exp) & 0x7FFF)) : ldexp
(m,(int)ntohs(exp));

47

48 }
49

50 void htond(char* x, double* d, int n){
51

52 double m;
53 int temp;
54 for(int i=0; i<n; ++i){
55

56 m=frexp(d[i],&temp); //m ist die Mantisse, temp der Exponent
57

58 if(m>=0 && temp>=0){
59 *(unsigned short*)(x+i*10+8) = (unsigned short) temp; //Exponent zur

Basis 2
60 *(unsigned int*)(x+10*i) = (unsigned int)1E8*m; //Digit 1 bis 8 von m +

VZ von m
61 *(unsigned int*)(x+10*i+4) = (unsigned int)(1E8*(m*1E8-(*(unsigned int*)(

x+10*i)))); //Digit 9-16 von m + VZ von exp
62 }
63 else if(m>=0 && temp<0){
64 *(unsigned short*)(x+i*10+8) = (unsigned short) -temp; //Exponent zur

Basis 2
65 *(unsigned int*)(x+10*i) = (unsigned int)1E8*m; //Digit 1 bis 8 von m +

VZ von m
66 *(unsigned int*)(x+10*i+4) = ((unsigned int)(1E8*(m*1E8-(*(unsigned int*)

(x+10*i))))); //Digit 9-16 von m
67 (*(unsigned int*)(x+10*i+4)) |= 0x80000000; // VZ von exp
68 }
69 else if(m<0 && temp>=0){
70 *(unsigned short*)(x+i*10+8) = (unsigned short) temp; //Exponent zur

Basis 2
71 *(unsigned int*)(x+10*i) = ((unsigned int) (-1E8*m)); //Digit 1 bis 8 von

m
72 *(unsigned int*)(x+10*i+4) = (unsigned int)(-1E8*(m*1E8+(*(unsigned int*)

(x+10*i)))); //Digit 9-16 von m + VZ von exp
73 (*(unsigned int*)(x+10*i)) |= 0x80000000; //VZ von m
74 }
75 else { //(m<0 && temp<0)
76 *(unsigned short*)(x+i*10+8) = (unsigned short) -temp; //Exponent zur

Basis 2
77 *(unsigned int*)(x+10*i) = ((unsigned int) (-1E8*m)); //Digit 1 bis 8 von

m
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78 *(unsigned int*)(x+10*i+4) = (unsigned int)(-1E8*(m*1E8+(*(unsigned int*)
(x+10*i)))); //Digit 9-16 von m

79 (*(unsigned int*)(x+10*i)) |= 0x80000000; //VZ von m
80 (*(unsigned int*)(x+10*i+4)) |= 0x80000000; //VZ von exp
81 }
82

83 //Umwandlung in Netzwerk-Byteorder
84 *(unsigned int*)(x+10*i) = htonl(*(unsigned int*)(x+10*i));
85 *(unsigned int*)(x+10*i+4) = htonl(*(unsigned int*)(x+10*i+4));
86 *(unsigned short*)(x+i*10+8) = htons(*(unsigned short*)(x+i*10+8));
87 }
88 }
89

90 void ntohd(char* x, double* d, int n){
91

92 double m;
93 for(int i=0; i<n; ++i){
94 m = ntohl(*(unsigned int*)(x+10*i)) & 0x80000000 ? -((ntohl(*(unsigned int

*)(x+10*i+4))& 0x7FFFFFFF)*1E-16+
95 (ntohl(*(unsigned int*)(x+10*i)) & 0x7FFFFFFF)*1E-8) : (ntohl(*(unsigned

int*)(x+10*i+4)) & 0x7FFFFFFF)*1E-16+ntohl(*(unsigned int*)(x+10*i))
*1E-8;

96 d[i] = ntohl(*(unsigned int*)(x+10*i+4)) & 0x80000000 ? ldexp(m,-(int)(
ntohs(*(unsigned short*)(x+i*10+8)) & 0x7FFF)) : ldexp(m,(int)ntohs(*(
unsigned short*)(x+i*10+8)));

97 }
98

99 }
100

101 void htond(char* x, double** d, int n, int k){
102

103 double m;
104 int temp;
105 int i = 0;
106

107 for(int p=0; p<k; ++p){
108

109 for(int r=0; r<n; ++r){
110

111 m=frexp(d[r][p],&temp); //m ist die Mantisse, temp der Exponent
112

113 if(m>=0 && temp>=0){
114 *(unsigned short*)(x+i*10+8) = (unsigned short) temp; //Exponent zur

Basis 2
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115 *(unsigned int*)(x+10*i) = (unsigned int)1E8*m; //Digit 1 bis 8 von m +
VZ von m

116 *(unsigned int*)(x+10*i+4) = (unsigned int)(1E8*(m*1E8-(*(unsigned int*)
(x+10*i)))); //Digit 9-16 von m + VZ von exp

117 }
118 else if(m>=0 && temp<0){
119 *(unsigned short*)(x+i*10+8) = (unsigned short) -temp; //Exponent zur

Basis 2
120 *(unsigned int*)(x+10*i) = (unsigned int)1E8*m; //Digit 1 bis 8 von m +

VZ von m
121 *(unsigned int*)(x+10*i+4) = ((unsigned int)(1E8*(m*1E8-(*(unsigned int

*)(x+10*i))))); //Digit 9-16 von m
122 (*(unsigned int*)(x+10*i+4)) |= 0x80000000; // VZ von exp
123 }
124 else if(m<0 && temp>=0){
125 *(unsigned short*)(x+i*10+8) = (unsigned short) temp; //Exponent zur

Basis 2
126 *(unsigned int*)(x+10*i) = ((unsigned int) (-1E8*m)); //Digit 1 bis 8

von m
127 *(unsigned int*)(x+10*i+4) = (unsigned int)(-1E8*(m*1E8+(*(unsigned int

*)(x+10*i)))); //Digit 9-16 von m + VZ von exp
128 (*(unsigned int*)(x+10*i)) |= 0x80000000; //VZ von m
129 }
130 else { //(m<0 && temp<0)
131 *(unsigned short*)(x+i*10+8) = (unsigned short) -temp; //Exponent zur

Basis 2
132 *(unsigned int*)(x+10*i) = ((unsigned int) (-1E8*m)); //Digit 1 bis 8

von m
133 *(unsigned int*)(x+10*i+4) = (unsigned int)(-1E8*(m*1E8+(*(unsigned int

*)(x+10*i)))); //Digit 9-16 von m
134 (*(unsigned int*)(x+10*i)) |= 0x80000000; //VZ von m
135 (*(unsigned int*)(x+10*i+4)) |= 0x80000000; //VZ von exp
136 }
137

138 //Umwandlung in Netzwerk-Byteorder
139 *(unsigned int*)(x+10*i) = htonl(*(unsigned int*)(x+10*i));
140 *(unsigned int*)(x+10*i+4) = htonl(*(unsigned int*)(x+10*i+4));
141 *(unsigned short*)(x+i*10+8) = htons(*(unsigned short*)(x+i*10+8));
142

143 ++i;
144 }
145

146 }
147 }
148
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149 void ntohd(char* x, double** d, int n, int k){
150

151 double m;
152 int i=0;
153 for(int p=0; p<k; ++p){
154 for(int r=0; r<n; ++r){
155 m = ntohl(*(unsigned int*)(x+10*i)) & 0x80000000 ? -((ntohl(*(unsigned

int*)(x+10*i+4))& 0x7FFFFFFF)*1E-16+
156 (ntohl(*(unsigned int*)(x+10*i)) & 0x7FFFFFFF)*1E-8) : (ntohl(*(unsigned

int*)(x+10*i+4)) & 0x7FFFFFFF)*1E-16+ntohl(*(unsigned int*)(x+10*i)
)*1E-8;

157 d[r][p] = ntohl(*(unsigned int*)(x+10*i+4)) & 0x80000000 ? ldexp(m,-(int)
(ntohs(*(unsigned short*)(x+i*10+8)) & 0x7FFF)) : ldexp(m,(int)ntohs
(*(unsigned short*)(x+i*10+8)));

158 ++i;
159 }
160 }
161

162 }
163

164 void htond12(char* x, double* d, int n, int k){
165

166 double m;
167 int temp;
168 int i = 0;
169

170 for(int p=0; p<k; ++p){
171

172 for(int r=0; r<n; ++r){
173

174 m=frexp(d[r*k+p],&temp); //m ist die Mantisse, temp der Exponent
175

176 if(m>=0 && temp>=0){
177 *(unsigned short*)(x+i*10+8) = (unsigned short) temp; //Exponent zur

Basis 2
178 *(unsigned int*)(x+10*i) = (unsigned int)1E8*m; //Digit 1 bis 8 von m +

VZ von m
179 *(unsigned int*)(x+10*i+4) = (unsigned int)(1E8*(m*1E8-(*(unsigned int*)

(x+10*i)))); //Digit 9-16 von m + VZ von exp
180 }
181 else if(m>=0 && temp<0){
182 *(unsigned short*)(x+i*10+8) = (unsigned short) -temp; //Exponent zur

Basis 2
183 *(unsigned int*)(x+10*i) = (unsigned int)1E8*m; //Digit 1 bis 8 von m +

VZ von m
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184 *(unsigned int*)(x+10*i+4) = ((unsigned int)(1E8*(m*1E8-(*(unsigned int
*)(x+10*i))))); //Digit 9-16 von m

185 (*(unsigned int*)(x+10*i+4)) |= 0x80000000; // VZ von exp
186 }
187 else if(m<0 && temp>=0){
188 *(unsigned short*)(x+i*10+8) = (unsigned short) temp; //Exponent zur

Basis 2
189 *(unsigned int*)(x+10*i) = ((unsigned int) (-1E8*m)); //Digit 1 bis 8

von m
190 *(unsigned int*)(x+10*i+4) = (unsigned int)(-1E8*(m*1E8+(*(unsigned int

*)(x+10*i)))); //Digit 9-16 von m + VZ von exp
191 (*(unsigned int*)(x+10*i)) |= 0x80000000; //VZ von m
192 }
193 else { //(m<0 && temp<0)
194 *(unsigned short*)(x+i*10+8) = (unsigned short) -temp; //Exponent zur

Basis 2
195 *(unsigned int*)(x+10*i) = ((unsigned int) (-1E8*m)); //Digit 1 bis 8

von m
196 *(unsigned int*)(x+10*i+4) = (unsigned int)(-1E8*(m*1E8+(*(unsigned int

*)(x+10*i)))); //Digit 9-16 von m
197 (*(unsigned int*)(x+10*i)) |= 0x80000000; //VZ von m
198 (*(unsigned int*)(x+10*i+4)) |= 0x80000000; //VZ von exp
199 }
200

201 //Umwandlung in Netzwerk-Byteorder
202 *(unsigned int*)(x+10*i) = htonl(*(unsigned int*)(x+10*i));
203 *(unsigned int*)(x+10*i+4) = htonl(*(unsigned int*)(x+10*i+4));
204 *(unsigned short*)(x+i*10+8) = htons(*(unsigned short*)(x+i*10+8));
205

206 ++i;
207 }
208

209 }
210

211 }
212

213 void ntohd21(char* x, double* d, int n, int k){
214

215 double m;
216 int i=0;
217 for(int p=0; p<k; ++p){
218 for(int r=0; r<n; ++r){
219 m = ntohl(*(unsigned int*)(x+10*i)) & 0x80000000 ? -((ntohl(*(unsigned

int*)(x+10*i+4))& 0x7FFFFFFF)*1E-16+

144



A.4. EXCHANGE_CLASS_WINDOWS.H

220 (ntohl(*(unsigned int*)(x+10*i)) & 0x7FFFFFFF)*1E-8) : (ntohl(*(unsigned
int*)(x+10*i+4)) & 0x7FFFFFFF)*1E-16+ntohl(*(unsigned int*)(x+10*i)
)*1E-8;

221 d[r*k+p] = ntohl(*(unsigned int*)(x+10*i+4)) & 0x80000000 ? ldexp(m,-(int
)(ntohs(*(unsigned short*)(x+i*10+8)) & 0x7FFF)) : ldexp(m,(int)ntohs
(*(unsigned short*)(x+i*10+8)));

222 ++i;
223 }
224 }
225

226 }

A.4. exchange_class_windows.h

1 #include <string>
2 #include <windows.h>
3 #include "interface_baseclass.h"
4 //includes winsock2.h
5

6 //ws2_32.lib has to be included in additional linking dependencies!! --> done
in WorkingModule

7

8 #ifndef EX_CLASS_WIN
9 #define EX_CLASS_WIN

10

11 class DataInit; //forward declaration
12 class ElementDataContainer;
13 class MBS;
14

15 class DataH: public interface_baseclass {
16

17 public:
18 //default constructor - if this is used, actual construction is done using

init
19 DataH():isinitialized(false){};
20 DataH(const DataInit& a, ElementDataContainer* edc, const std::string&

inputskript, MBS* mbs, double SPHmass=-1.);
21 //if SPHmass is specified, it is assigned to all particles instead of the

parameter SPHparticlemass defined in the Model-txt
22

23 DataH(const DataH &); //copy constructor
24 DataH& operator=(const DataH&); //copy assignment
25 ~DataH();
26
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27 void init(const DataInit& a, ElementDataContainer* edc, const std::string&
inputskript, MBS* mbs, double SPHmass=-1.);

28 void sendrv();
29 void sendrvfull();
30 void sendrSPH();
31 void sendvSPH();
32 void getforce();
33 void getrSPH();
34 void getrohSPH();
35 void sendrohSPH();
36 void sendone(std::string) const; //sends one LIGGGHTS input script line to

client
37 void send_command(std::string) const; //sends one command to client and

responds appropriately, if e.g. data is sent from the client; possible
commands: see exchange_class_Linux.h - int recv_command();

38 void set_timestep(double timestep); //sets and sends current size of
timestep; has to be done before first "run" command

39 void closeTCP();
40 void getvSPH();
41 void send_ref_opt();
42 void send_ref_res();
43

44 protected:
45 SOCKET s; //s...server-socket (->listen mode), c...socket data exchange with

client (after accept)
46 SOCKET c;
47 bool isinitialized; //true if memory was allocated and tcp connection was

set up -> used in destructor
48 };
49

50 struct vec3D{
51 double c[3];
52 vec3D* next;
53 };
54

55 struct elemlist2D{
56 unsigned int el[2];
57 elemlist2D* next;
58 };
59

60 struct elemlist3D{
61 unsigned int el[3];
62 elemlist3D* next;
63 };
64
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65 class DataInit {
66 public:
67 unsigned int n; //number of points
68 unsigned int nstat; //number of points which are assumed to be static points

(boundaries fixed to ground)
69 //points with numers 0...(n-nstat-1) are treated as regular dynamic points,

points with numbers n-nstat...n-1 are treated as static points, i.e.
70 //corresponding r and v is only exchanged in initialization; by default,

nstat=0 (i.e., all points receive full data transfer)
71 unsigned int nel; //number of elements
72 unsigned int nSPH; //number of SPH particles
73 unsigned short dim; //dimension (2 for 2D, 3 for 3D)
74 elemlist2D* el2D; //data with dynamic memory allocation
75 elemlist3D* el3D;
76 vec3D* r;
77 vec3D* v;
78 vec3D* rSPH;
79 vec3D* vSPH;
80 DataInit(unsigned short d); // d = dim
81 void add_elem(int*);
82 inline void add_elem(int a,int b, int c=0){int temp[3]; temp[0]=a; temp[1]=b

; temp[2]=c; add_elem(temp);}
83 void add_point(double* r,double* v);
84 void add_pointSPH(double* r,double* v);
85 unsigned int get_el(int i, int j) const; // returns j-th point of element i;

counting starts from 0;
86 double get_r(int i, int j) const; //returns j-th coordinate of i-th point;

counting starts from 0;
87 double get_v(int i, int j) const;
88 double get_rSPH(int i, int j) const;
89 double get_vSPH(int i, int j) const;
90 void set_nstat(int a=0){nstat = a;}
91 ~DataInit();
92 };
93

94 #endif

A.5. exchange_class_windows.cpp

1 #include "exchange_class_windows.h"
2 #include "interface_baseclass.h"
3 #include <fstream>
4 #include <cstdlib>
5 #include <windows.h>
6 //includes winsock2.h
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7 #include "dn.h"
8 #include <iostream>
9 #include <sstream>

10

11 #include "MBS_includes.h"
12 #include "mbs.h"
13 //#include <assert.h>
14

15 using namespace std;
16

17 int startWinsock(){
18 WSADATA wsa;
19 return WSAStartup(MAKEWORD(2,0),&wsa); //MAKEWORD ist ein Makro, das die

Versionsnummer 2.0 in ein WORD (unsigned short) umwandelt
20 }
21

22 string convertInt(int number);
23 /*{
24 stringstream ss;//create a stringstream
25 ss << number;//add number to the stream
26 return ss.str();//return a string with the contents of the stream
27 }*/
28

29 string convertDouble(double number)
30 {
31 stringstream ss;//create a stringstream
32 ss << number;//add number to the stream
33 return ss.str();//return a string with the contents of the stream
34 }
35

36 DataH::DataH(const DataInit& a, ElementDataContainer* edc, const std::string&
inputskript, MBS* mbs, double SPHmass){

37 init(a, edc, inputskript, mbs);
38 }
39

40 void DataH::init(const DataInit &a, ElementDataContainer* edc, const std::
string& inputskript, MBS* mbs, double SPHmass){

41

42 isinitialized=true;
43 dt=0.0; //actual timestep is set using set_timestep(double)
44

45 int option = edc->TreeGetInt("LIGGGHTS_SPH_parameters.refinement_option",1);
46 if(option==0 || option==1 || option==2 || option==3)
47 set_refinement_option(option);
48 else
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49 set_refinement_option(1);
50

51 set_dr(edc->TreeGetDouble("LIGGGHTS_SPH_parameters.refinement_resolution",
edc->TreeGetDouble("LIGGGHTS_SPH_parameters.smoothinglength")));

52

53 //TCP-IP v4 server setup and initialization of IP, port, nSPH
54 //---------------------------------------------------------------
55

56 long rc;
57 SOCKADDR_IN addr;
58 string temp1;
59 short port;
60 ifstream src;
61

62 port = short(edc->TreeGetInt("TCP_data.port"));
63 int ip1 = edc->TreeGetInt("TCP_data.ip1");
64 int ip2 = edc->TreeGetInt("TCP_data.ip2");
65 int ip3 = edc->TreeGetInt("TCP_data.ip3");
66 int ip4 = edc->TreeGetInt("TCP_data.ip4");
67 temp1.append(convertInt(ip1)).append(".").append(convertInt(ip2)).append("."

).append(convertInt(ip3)).append(".").append(convertInt(ip4));
68

69 //get dimension
70 dim=a.dim;
71

72 //start Winsock
73 rc=startWinsock();
74

75 // ERROR CHECKING
76 if(rc!=0){
77 mbs->UO(UO_LVL_err).InstantMessageText(mystr("ERROR TCP/IP: start winsock,

error code: ") + mystr(rc) + mystr("\n"));
78 //system("PAUSE");
79 //return 1;
80 }
81 else{
82 mbs->UO()<< "Winsock started" << "\n";
83 }
84

85 //create socket
86 s=socket(AF_INET,SOCK_STREAM,0);
87

88 // ERROR CHECKING
89 if(s==INVALID_SOCKET){
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90 mbs->UO(UO_LVL_err).InstantMessageText(mystr("ERROR TCP/IP: Create socket,
error code: ") + mystr(WSAGetLastError()) + mystr("\n"));

91 //system("PAUSE");
92 //return 1;
93 }
94 else{
95 mbs->UO()<< "Socket created" << "\n";
96 }
97

98 //bind server socket to fixed port/ip
99 memset(&addr,0,sizeof(SOCKADDR_IN)); //see also p.19, Beej’s Guide

100 addr.sin_family=AF_INET;
101 addr.sin_port=htons(port);
102 addr.sin_addr.s_addr=inet_addr(temp1.c_str());
103 rc=bind(s,(SOCKADDR*)&addr,sizeof(SOCKADDR_IN));
104

105 //ERROR CHECKING
106 if(rc==SOCKET_ERROR){
107 mbs->UO(UO_LVL_err).InstantMessageText(mystr("ERROR TCP/IP: bind, error

code: ") + mystr(WSAGetLastError()) + mystr("\n"));
108 //system("Pause");
109 //return 1;
110 }else{
111 mbs->UO()<< "Socket bound to IP " << temp1.c_str() << ", port " << port <<

"\n";
112 }
113

114 //Listen-Modus für den Server-Socket
115 rc=listen(s,10);
116 //ERROR CHECKING
117 if(rc==SOCKET_ERROR){
118 mbs->UO(UO_LVL_err).InstantMessageText(mystr("ERROR TCP/IP: listen, error

code: ") + mystr(WSAGetLastError()) + mystr("\n"));
119 //system("Pause");
120 //return 1;
121 }else{
122 mbs->UO()<< "server-socket is in listen-mode..." << "\n";
123 }
124

125 //Verbindung annehmen
126 c=accept(s,NULL,NULL);
127 //ERROR CHECKING
128 if(c==INVALID_SOCKET){
129 mbs->UO(UO_LVL_err).InstantMessageText(mystr("ERROR TCP/IP: accept, error

code: ") + mystr(WSAGetLastError()) + mystr("\n"));
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130 //return 1;
131 }else{
132 mbs->UO()<< "new connection was accepted" << "\n";
133 }
134

135 //data transfer and initialization of LIGGGHTS and rSPH
136 //------------------------------------------------------------
137

138 //read in LIGGGHTS variable definitions from edc
139

140 ElementDataContainer* subedc = (edc->TreeFind("LIGGGHTS_SPH_parameters"))->
GetEDC();

141 int subedc_len = subedc->Length();
142 for(int i=1; i<=subedc_len; ++i){
143 string vardef = "variable ";
144

145 vardef.append(subedc->Get(i).GetDataName()).append(" equal ").append(
convertDouble(subedc->Get(i).GetDouble()));

146 sendone(vardef);
147 }
148 sendone("qqqq");
149

150 int convert;
151 nSPH=a.nSPH;
152 convert=htonl(nSPH);
153 send(c,reinterpret_cast<char *>(&convert),4,0);
154

155 string read;
156 unsigned int remain,length;
157 char trig[]="create_box"; // if this string is found at the beginning of an

inputskript-line, nSPH particles are created at (0,0,0)
158 int trigl=strlen(trig);
159 bool testswitch = true;
160

161 //initial position for all particles; only used when particles are created
in LIGGGHTS; later, overwritten with actual initial positions;

162 double xmi = 0.5*(edc->TreeGetDouble("LIGGGHTS_SPH_parameters.xmin")+edc->
TreeGetDouble("LIGGGHTS_SPH_parameters.xmax"));

163 double ymi = 0.5*(edc->TreeGetDouble("LIGGGHTS_SPH_parameters.ymin")+edc->
TreeGetDouble("LIGGGHTS_SPH_parameters.ymax"));

164 double zmi = 0.5*(edc->TreeGetDouble("LIGGGHTS_SPH_parameters.zmin")+edc->
TreeGetDouble("LIGGGHTS_SPH_parameters.zmax"));

165 if(dim == 2) zmi = 0.0;
166

167 string createatoms = "create_atoms 1 single ";
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168 createatoms.append(convertDouble(xmi)).append(" ").append(convertDouble(ymi)
).append(" ").append(convertDouble(zmi));

169 createatoms.append(" units box");
170

171 src.open(inputskript.c_str(),ios::binary|ios::in);
172 //assert(src.is_open());//"failed to open LIGGGHTS input script"
173 //error checking?
174

175 while(!getline(src,read).eof()){
176 cout << read << endl;
177 sendone(read);
178

179 //set mass and create particles after create_box command
180 if(strncmp(trig,read.c_str(),trigl)==0 && testswitch){
181 testswitch = false; //ensures that this is only done once
182

183 if(SPHmass > 0.){
184 string setmass = "mass 1 ";
185 setmass.append(convertDouble(SPHmass));
186 sendone(setmass);
187 }else{
188 string setmass = "mass 1 ${SPHparticlemass}";
189 sendone(setmass);
190 }
191

192 for(int i=0; i<nSPH; ++i){
193 //create SPH particles, initial positions (xmi,ymi,zmi) for all

particles
194 //real initial coordinates are set via sendrSPH()
195 sendone(createatoms);
196 }
197 }
198 }
199

200 // }
201

202 sendone("qqqq");
203 src.close();
204 src.clear();
205

206 //memory allocation and initialization from DataInit object a
207 //-----------------------------------------------------------------
208

209 //if number of boundary points n is below ~50, size for transfer of f / r /
v array is smaller than 1500 Bytes = TCP packet size
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210 //apparently, in that case transfer is REALLY slow (WHY???) ---> create
additional dummy boundary points, such that n = 60

211 //these points are not involved in any part of the calculation, as long as
they are not referenced in the element list (so they can be arbitrarily
initialized)

212

213 if(a.n > 60){
214 n = a.n;}
215 else{
216 n=60;
217 }
218 nel = a.nel;
219 convert=htonl(n);
220 send(c,reinterpret_cast<char *>(&convert),4,0);
221 nstat = a.nstat;
222 convert=htonl(nstat);
223 send(c,reinterpret_cast<char *>(&convert),4,0);
224 convert=htons(dim);
225 send(c,reinterpret_cast<char *>(&convert),2,0);
226

227 _r = new double[3*n];
228 _v = new double[3*n];
229 _f = new double[3*n];
230 for(int i=0; i<n; ++i){
231 for(int j=0; j<3; ++j){
232 if(i < a.n){
233 setr(i,j,a.get_r(i,j));
234 setv(i,j,a.get_v(i,j));
235 }
236 else{
237 setr(i,j,0.0); //dummy boundary points
238 setv(i,j,0.0);
239 }
240 setf(i,j,0.0); //force is set via getforce()
241 }
242 }
243

244 sendrvfull();
245

246 //create, initialize and send nel and el
247 _el = new unsigned int[dim*nel];
248 convert=htonl(nel);
249 send(c,reinterpret_cast<char *>(&convert),4,0);
250 for(int i=0; i<nel; ++i){
251 for(int j=0; j<dim; ++j){
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252 setel(i,j,a.get_el(i,j));
253 convert=htonl(el(i,j));
254 send(c,reinterpret_cast<char *>(&convert),4,0);
255 }
256 }
257

258 //send refinement_option
259 send_ref_opt();
260 send_ref_res();
261

262 //initialize and send rSPH and vSPH
263 _rSPH = new double[3*nSPH];
264 _vSPH = new double[3*nSPH];
265 for(int i=0; i<nSPH; ++i){
266 for(int j=0; j<3; ++j){
267 setrSPH(i,j,a.get_rSPH(i,j));
268 setvSPH(i,j,a.get_vSPH(i,j));
269 }
270 }
271

272 sendrSPH();
273 sendvSPH();
274

275 _rohSPH = new double[nSPH];
276 zerorohSPH();
277

278 }
279

280 DataH::DataH(const DataH & obj){
281 if(isinitialized){
282 s=obj.s;
283 c=obj.c;
284 isinitialized=obj.isinitialized;
285 dt=obj.dt;
286 refinement_option = obj.refinement_option;
287 dr = obj.dr;
288 n=obj.n;
289 nstat=obj.nstat;
290 nSPH=obj.nSPH;
291 nel=obj.nel;
292 dim=obj.dim;
293 _rSPH = new double[3*nSPH];
294 _vSPH = new double[3*nSPH];
295 _rohSPH = new double[nSPH];
296 _el = new unsigned int[dim*nel];
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297 _r = new double[3*n];
298 _v = new double[3*n];
299 _f = new double[3*n];
300 for(int i=0; i<3*n; ++i){
301 _f[i]=obj._f[i];
302 _v[i]=obj._v[i];
303 _r[i]=obj._r[i];
304 }
305 for(int i=0; i<dim*nel; ++i){
306 _el[i]=obj._el[i];
307 }
308 for(int i=0; i<3*nSPH; ++i){
309 _rSPH[i]=obj._rSPH[i];
310 _vSPH[i]=obj._vSPH[i];
311 }
312 for(int i=0; i<nSPH; ++i)
313 _rohSPH[i]=obj._rohSPH[i];
314 }
315 else{
316 s=obj.s;
317 c=obj.c;
318 isinitialized=obj.isinitialized;
319 }
320 }
321

322 DataH& DataH::operator=(const DataH& ref){
323 if(this != &ref){
324 if(isinitialized){
325 s=ref.s;
326 c=ref.c;
327 isinitialized=ref.isinitialized;
328 dt=ref.dt;
329 refinement_option = ref.refinement_option;
330 dr = ref.dr;
331 n=ref.n;
332 nstat=ref.nstat;
333 nSPH=ref.nSPH;
334 nel=ref.nel;
335 dim=ref.dim;
336

337 double* _rSPHtemp = new double[3*ref.nSPH];
338 double* _vSPHtemp = new double[3*ref.nSPH];
339 double* _rohSPHtemp = new double[ref.nSPH];
340 unsigned int* _eltemp = new unsigned int[ref.dim*nel];
341 double* _rtemp = new double[3*ref.n];
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342 double* _vtemp = new double[3*ref.n];
343 double* _ftemp = new double[3*ref.n];
344

345 for(int i=0; i<3*ref.n; ++i){
346 _ftemp[i]=ref._f[i];
347 _vtemp[i]=ref._v[i];
348 _rtemp[i]=ref._r[i];
349 }
350 for(int i=0; i<ref.dim*ref.nel; ++i){
351 _eltemp[i]=ref._el[i];
352 }
353 for(int i=0; i<3*ref.nSPH; ++i){
354 _rSPHtemp[i]=ref._rSPH[i];
355 _vSPHtemp[i]=ref._vSPH[i];
356 }
357 for(int i=0; i<ref.nSPH; ++i)
358 _rohSPHtemp[i]=ref._rohSPH[i];
359

360 delete [] _rSPH;
361 delete [] _vSPH;
362 delete [] _rohSPH;
363 delete [] _r;
364 delete [] _f;
365 delete [] _v;
366 delete [] _el;
367

368 _rSPH = _rSPHtemp;
369 _vSPH = _vSPHtemp;
370 _rohSPH = _rohSPHtemp;
371 _r = _rtemp;
372 _v = _vtemp;
373 _f = _ftemp;
374 _el = _eltemp;
375

376 }
377 else{
378 s=ref.s;
379 c=ref.c;
380 isinitialized=ref.isinitialized;
381 }
382 }
383 return *this;
384 }
385

386 DataH::~DataH(){
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387 if(isinitialized){
388

389 //close TCP sockets / cleanup
390 closeTCP();
391

392 //memory management
393

394 delete [] _r;
395 delete [] _v;
396 delete [] _f;
397 delete [] _rSPH;
398 delete [] _vSPH;
399 delete [] _rohSPH;
400 delete [] _el;
401 }
402 }
403

404 void DataH::closeTCP(){
405 closesocket(c); //error checking would be necessary here (e.g. after copy

construction)
406 closesocket(s);
407 WSACleanup();
408 }
409

410 void DataH::set_timestep(double timestep){
411 dt=timestep;
412 char temp[10];
413 int remain=10;
414 htond(temp,&dt,1);
415 while(remain!=0) remain-=send(c,temp+(10-remain),remain,0);
416 }
417

418 void DataH::send_ref_res(){
419 char temp[10];
420 int remain=10;
421 htond(temp,&dr,1);
422 while(remain!=0) remain-=send(c,temp+(10-remain),remain,0);
423 }
424

425 void DataH::getforce(){
426 char* mem = new char[30*(n-nstat)]; //memory which ntohd and htodn is

working on; size = 10*(number of doubles in array)
427

428 //with consistency check
429 int remain=30*(n-nstat);
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430 while(remain!=0) remain-=recv(c,mem+(30*(n-nstat)-remain),remain,0);
431 ntohd(mem,_f,3*(n-nstat));
432

433 delete [] mem;
434 }
435

436 void DataH::getrSPH(){
437 char* mem = new char[30*nSPH]; //memory which ntohd and htodn is working on;

size = 10*(number of doubles in array)
438

439 //with consistency check
440 int remain=30*nSPH;
441 while(remain!=0) remain-=recv(c,mem+(30*nSPH-remain),remain,0);
442 ntohd(mem,_rSPH,3*nSPH);
443

444 delete [] mem;
445

446 }
447

448 void DataH::getvSPH(){
449 char* mem = new char[30*nSPH]; //memory which ntohd and htodn is working on;

size = 10*(number of doubles in array)
450

451 //with consistency check
452 int remain=30*nSPH;
453 while(remain!=0) remain-=recv(c,mem+(30*nSPH-remain),remain,0);
454 ntohd(mem,_vSPH,3*nSPH);
455

456 delete [] mem;
457

458 }
459

460 void DataH::getrohSPH(){
461 char* mem = new char[10*nSPH]; //memory which ntohd and htodn is working on;

size = 10*(number of doubles in array)
462

463 //with consistency check
464 int remain=10*nSPH;
465 while(remain!=0) remain-=recv(c,mem+(10*nSPH-remain),remain,0);
466 ntohd(mem,_rohSPH,nSPH);
467

468 delete [] mem;
469

470 }
471

158



A.5. EXCHANGE_CLASS_WINDOWS.CPP

472 void DataH::sendrSPH(){
473 char* mem = new char[30*nSPH]; //memory which ntohd and htodn is working on;

size = 10*(number of doubles in array)
474

475 //with consistency check
476 int remain=30*nSPH;
477 htond(mem,_rSPH,3*nSPH);
478 while(remain!=0) remain-=send(c,mem+(30*nSPH-remain),remain,0);
479

480 delete [] mem;
481

482 }
483

484 void DataH::sendvSPH(){
485 char* mem = new char[30*nSPH]; //memory which ntohd and htodn is working on;

size = 10*(number of doubles in array)
486

487 //with consistency check
488 int remain=30*nSPH;
489 htond(mem,_vSPH,3*nSPH);
490 while(remain!=0) remain-=send(c,mem+(30*nSPH-remain),remain,0);
491

492 delete [] mem;
493

494 }
495

496 void DataH::sendrohSPH(){
497 char* mem = new char[10*nSPH]; //memory which ntohd and htodn is working on;

size = 10*(number of doubles in array)
498

499 //with consistency check
500 int remain=10*nSPH;
501 htond(mem,_rohSPH,nSPH);
502 while(remain!=0) remain-=send(c,mem+(10*nSPH-remain),remain,0);
503

504 delete [] mem;
505

506 }
507

508 void DataH::sendrv(){
509 char* mem = new char[30*(n-nstat)]; //memory which ntohd and htodn is

working on; size = 10*(number of doubles in array)
510

511 //with consistency check
512 htond(mem,_r,3*(n-nstat));
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513 int remain=30*(n-nstat);
514 while(remain!=0) remain-=send(c,mem+(30*(n-nstat)-remain),remain,0);
515

516 htond(mem,_v,3*(n-nstat));
517 remain=30*(n-nstat);
518 while(remain!=0) remain-=send(c,mem+(30*(n-nstat)-remain),remain,0);
519

520 delete [] mem;
521 }
522

523 void DataH::sendrvfull(){
524 char* mem = new char[30*n]; //memory which ntohd and htodn is working on;

size = 10*(number of doubles in array)
525

526 //with consistency check
527 htond(mem,_r,3*n);
528 int remain=30*n;
529 while(remain!=0) remain-=send(c,mem+(30*n-remain),remain,0);
530

531 htond(mem,_v,3*n);
532 remain=30*n;
533 while(remain!=0) remain-=send(c,mem+(30*n-remain),remain,0);
534

535 delete [] mem;
536 }
537

538 void DataH::sendone(string line) const {
539 unsigned int length=line.size()+1;
540 unsigned int remain = htonl(length);
541 send(c,reinterpret_cast<char *>(&remain),4,0);
542 remain = length;
543 char* temp = new char[length];
544 strcpy(temp,line.c_str());
545 while(remain!=0) remain-=send(c,temp+(length-remain),remain,0);
546 delete [] temp;
547 }
548

549 void DataH::send_ref_opt(){
550 unsigned int temp = htonl(refinement_option);
551 send(c,reinterpret_cast<char *>(&temp),4,0);
552 }
553

554 void DataH::send_command(string line) const {
555 unsigned int length=line.size()+1;
556 unsigned int remain = htonl(length);
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557 send(c,reinterpret_cast<char *>(&remain),4,0);
558 remain = length;
559 char* temp = new char[length];
560 strcpy(temp,line.c_str());
561 while(remain!=0) remain-=send(c,temp+(length-remain),remain,0);
562

563 if(strncmp(temp,"send SPH",length)==0){
564 const_cast<DataH* const> (this)->getrSPH();
565 const_cast<DataH* const> (this)->getvSPH();
566 const_cast<DataH* const> (this)->getrohSPH();
567 }
568

569 if(strncmp(temp,"send f",length)==0){
570 const_cast<DataH* const> (this)->getforce();
571 }
572

573 if(strncmp(temp,"dummy",length)==0){
574 }
575

576 if(strncmp(temp,"recv rv",length)==0){
577 const_cast<DataH* const> (this)->sendrv();
578 }
579

580 delete [] temp;
581 }
582

583 DataInit::DataInit(unsigned short d){
584 dim = d;
585 r = new vec3D;
586 v = new vec3D;
587 r->next=NULL;
588 v->next=NULL;
589 rSPH = new vec3D;
590 vSPH = new vec3D;
591 rSPH->next=NULL;
592 vSPH->next=NULL;
593 n=0;
594 nel=0;
595 nSPH=0;
596 el2D = new elemlist2D;
597 el3D = new elemlist3D;
598 el2D->next=NULL;
599 el3D->next=NULL;
600 }
601
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602 void DataInit::add_elem(int* points){
603 if(dim==2){
604 elemlist2D* temp = el2D;
605 elemlist2D* neu = new elemlist2D;
606 while(temp->next) temp=temp->next;
607 for(int i=0; i<dim; ++i) (neu->el)[i]=points[i];
608 (neu->next)=NULL;
609 (temp->next)=neu;
610

611 }
612 else if(dim==3){ //dim==3
613 elemlist3D* temp = el3D;
614 elemlist3D* neu = new elemlist3D;
615 while(temp->next) temp=temp->next;
616 for(int i=0; i<dim; ++i) (neu->el)[i]=points[i];
617 (neu->next)=NULL;
618 (temp->next)=neu;
619 }
620

621 nel++;
622 }
623

624 void DataInit::add_point(double* rglob, double* vglob){
625 vec3D* temp = r;
626 while(temp->next) temp=temp->next;
627 vec3D* neu = new vec3D;
628 for(int i=0; i<3; ++i) (neu->c)[i]=rglob[i];
629 (neu->next)=NULL;
630 (temp->next)=neu;
631

632 temp = v;
633 while(temp->next) temp=temp->next;
634 neu = new vec3D;
635 for(int i=0; i<3; ++i) (neu->c)[i]=vglob[i];
636 (neu->next)=NULL;
637 (temp->next)=neu;
638

639 n++;
640 }
641

642 void DataInit::add_pointSPH(double* rglob, double* vglob){
643 vec3D* temp = rSPH;
644 while(temp->next) temp=temp->next;
645 vec3D* neu = new vec3D;
646 for(int i=0; i<3; ++i) (neu->c)[i]=rglob[i];
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647 (neu->next)=NULL;
648 (temp->next)=neu;
649

650 temp = vSPH;
651 while(temp->next) temp=temp->next;
652 neu = new vec3D;
653 for(int i=0; i<3; ++i) (neu->c)[i]=vglob[i];
654 (neu->next)=NULL;
655 (temp->next)=neu;
656

657 nSPH++;
658 }
659

660 unsigned int DataInit::get_el(int i, int j) const{ // get j-th point of
element i

661 if(dim==2){
662 elemlist2D* temp = el2D;
663 for(int m=0; m<i+1; ++m) temp = temp->next; //i+1 for counting from 0; 1st

element actually is at el2D->next
664 return (temp->el)[j];
665 }
666 else if(dim==3){
667 elemlist3D* temp = el3D;
668 for(int m=0; m<i+1; ++m) temp = temp->next;
669 return (temp->el)[j];
670 }
671 }
672

673 double DataInit::get_r(int i, int j) const { //get j-th coordinate of i-th
point

674 vec3D* temp = r;
675 for(int m=0; m<i+1; ++m) temp = temp->next; //i+1 for counting from 0; 1st r

actually is at r->next
676 return (temp->c)[j];
677 }
678

679 double DataInit::get_v(int i, int j) const { //get j-th coordinate of i-th
point

680 vec3D* temp = v;
681 for(int m=0; m<i+1; ++m) temp = temp->next; //i+1 for counting from 0; 1st r

actually is at r->next
682 return (temp->c)[j];
683 }
684
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685 double DataInit::get_rSPH(int i, int j) const { //get j-th coordinate of i-th
point

686 vec3D* temp = rSPH;
687 for(int m=0; m<i+1; ++m) temp = temp->next; //i+1 for counting from 0; 1st r

actually is at r->next
688 return (temp->c)[j];
689 }
690

691 double DataInit::get_vSPH(int i, int j) const {
692 vec3D* temp = vSPH;
693 for(int m=0; m<i+1; ++m) temp = temp->next; //i+1 for counting from 0; 1st v

actually is at r->next
694 return (temp->c)[j];
695 }
696

697 DataInit::~DataInit(){
698 elemlist2D* temp = el2D;
699 elemlist2D* temp1 = el2D->next;
700 while(temp1){
701 delete temp;
702 temp = temp1;
703 temp1=temp1->next;
704 }
705 delete temp;
706

707 elemlist3D* temp3 = el3D;
708 elemlist3D* temp31 = el3D->next;
709 while(temp31){
710 delete temp3;
711 temp3 = temp31;
712 temp31=temp31->next;
713 }
714 delete temp3;
715

716 vec3D* tempr = r;
717 vec3D* tempr1 = r->next;
718 while(tempr1){
719 delete tempr;
720 tempr = tempr1;
721 tempr1=tempr1->next;
722 }
723 delete tempr;
724

725 tempr = rSPH;
726 tempr1 = rSPH->next;
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727 while(tempr1){
728 delete tempr;
729 tempr = tempr1;
730 tempr1=tempr1->next;
731 }
732 delete tempr;
733

734 vec3D* tempv = v;
735 vec3D* tempv1 = v->next;
736 while(tempv1){
737 delete tempv;
738 tempv = tempv1;
739 tempv1=tempv1->next;
740 }
741 delete tempv;
742

743 tempv = vSPH;
744 tempv1 = vSPH->next;
745 while(tempv1){
746 delete tempv;
747 tempv = tempv1;
748 tempv1=tempv1->next;
749 }
750 delete tempv;
751

752 }

A.6. fsi_communication_element.h

1 //#**************************************************************
2 //#
3 //# filename: fsi_ommunication_element.h
4 //#
5 //# project: FSI
6 //#
7 //# author: Markus Schoergenhumer, PG, JG
8 //#
9 //# generated: March 2012

10 //# description: Model (master) & communication element for coupled (fluid
structure interaction) simulation with Liggghts

11 //#
12 //# remarks:
13 //#
14 //# This file is part of the program package HOTINT and underlies the

stipulations
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15 //# of the scientific or license agreement. It is therefore emphasized not to
copy

16 //# or redistribute this file. The use of this file is only permitted for
academic or scholar

17 //# research. It is forbidden to use any part of this code for military
applications!

18 //# The Developer does not assume any liability for this code or for results
obtained

19 //# within its use, nor shall he be liable for any direct, indirect, or other
damage

20 //# resulting from use of this code.
21 //#
22 //# bug reports are welcome!!!
23 //# WWW: http://tmech.mechatronik.uni-linz.ac.at/staff/gerstmayr/gerstmayr.

html
24 //# email: jg@jku.at
25 //#**************************************************************
26

27 #include "exchange class Win.h"
28 #include "MBS_includes_element.h"
29

30 using namespace std;
31

32 string convertInt(int number);
33

34 #pragma region FSI Communication Element
35

36 // one instance of this element has to be added to mbs (in function
Generate_FSI_04_Markus)

37 // it provides communication via TCP/IP-communication-interface with Liggghts.
38 // - TCP/IP-communication-interface initialized in method Initialize()
39 // - outgoing and incoming data communication processed in method

StartTimeStep()
40 // currently, PostNewtonStep(double t) only does redrawing
41 // finalize called in ComputationFinished()
42 //SPH particle positions are saved in XData inherited from Element
43

44 #ifndef FSI_COMMUNICATION_ELEMENT
45 #define FSI_COMMUNICATION_ELEMENT
46

47 class FSI_Communication_Element : public Element
48 {
49

50 protected:
51
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52 // for simulation driving (currently not in use)
53 int step;
54 int counter;
55

56 int dim; // space dimension (2, or 3)
57 int nparticles; // number of SPH particles (total)
58 int nequi; // number of (LIGGGHTS-only) equilibration steps
59

60 double deltax; //if deltax specified as a positive value, uniformy
distributed displacements in tha range [-0.5*deltax,0.5*deltax] are added
to all particle positions

61

62 TArray<int> sph; //list containing the numbers of the SPHParticle2D (or
later: some 3D) elements in MBS for SPH data management and visualization
; element no sph(i) corresponds to

63 //particle i-1 in DataH (counting starts here from 0)
64 DataH dataobj; //coupling class
65

66 TArray<int> boundary; //boundary is a list containing the numbers of all
GeomElements that are actually used as boundary elements (i.e. those
which were created

67 //either using the method AddGeomLine2D or AddGeomTrig3D
68 TArray<int> boundary_flags; // boundary_flags(i) contains a flag

corresponding to boundary element boundary(i); 1 ... regular element, 0
... static boundary element (fixed to ground / mbs)

69 int nstat; //number of static boundary elements (fixed to MBS / with elemnr
=0)

70

71 TMatrix<int> loadlist; //in 2(3)D: Considering GeomElement with number
boundary(i) with associated Element e, loadlist(j,i), i=1...boundary.
Length(), j=1...2(3)

72 //contains the number of the load in e.loads acting on the j-th point of
considered GeomElement (on element e)

73 bool isinitialized; //is set to 0 in construction, to 1 after TCP
communication and DataH object have been set up

74

75 string inputscript;
76

77 ElementDataContainer* edc;
78

79 void InitializeDataCommunication();
80

81 void IncomingDataCommunication(int step);
82

83 double OutgoingDataCommunication();
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84

85 void Finalize();
86

87 public:
88

89 // set element properties from outside via this method
90 void Set_FSI_Communication_Element(int dim, int nequi, ElementDataContainer*

edc, std::string& inputscript, double deltaX=-1.);
91

92 //data access SPH particles 2D
93 void SetParticleData2D(int i, Vector2D& r, Vector2D& v, double rho);
94

95 void SetParticlePos2D(int i, Vector2D& r);
96

97 Vector2D GetParticlePos2D(int i);
98

99 Vector2D GetParticleVel2D(int i);
100

101 double GetParticleDensity2D(int i);
102

103 //data access SPH particles 3D
104 void SetParticleData3D(int i, Vector3D& r, Vector3D& v, double rho);
105

106 void SetParticlePos3D(int i, Vector3D& r);
107

108 Vector3D GetParticlePos3D(int i);
109

110 Vector3D GetParticleVel3D(int i);
111

112 double GetParticleDensity3D(int i);
113

114 //add one SPH particle in 2D
115 void AddSPH2D(MBS* mbs, const Vector& xg5, double radius, double mass, const

Vector3D& color);
116

117 //add one SPH particle in 3D
118 void AddSPH3D(MBS* mbs, const Vector& xg7, double radius, double mass, const

Vector3D& color);
119

120 //returns the global position of the k-th point of a GeomElement temp
121 Vector2D GetGlobPos2D(GeomElement* temp, int k);
122

123 //returns the global position of the k-th point of a GeomElement temp
124 Vector3D GetGlobPos3D(GeomElement* temp, int k);
125
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126 //returns the global velocity of the k-th point of a GeomElement temp
127 Vector2D GetGlobVel2D(GeomElement* temp, int k);
128

129 //returns the global velocity of the k-th point of a GeomElement temp
130 Vector3D GetGlobVel3D(GeomElement* temp, int k);
131

132 //apply the force from boundary point DataH el(i-1,k-1) to corresponding
point k of GeomElement with number boundary(i)

133 void ApplyForce2D(int i, int k);
134

135 //apply the force from boundary point DataH el(i-1,k-1) to corresponding
point k of GeomElement with number boundary(i)

136 void ApplyForce3D(int i, int k);
137

138 //add a GeomLine2D as boundary element
139 void AddGeomLine2D(GeomLine2D& line);
140

141 //add a GeomTrig3D as boundary element
142 void AddGeomTrig3D(GeomTrig3D& trig);
143

144 //functions that use variables defined in the LIGGGHTS input scripts
145 //------------------------------------------------------------------
146

147 //reset pair_style with actual viscosity
148 void ResetVisc();
149

150 //------------------------------------------------------------------
151

152 //functions for particle and boundary creation in the model file
153 //------------------------------------------------------------------
154

155 //NOTE: currently LIGGGHTS-sided only one constant mass is used for all
particles - it is calculated as an average over all HotInt-sided defined
particle masses!!

156

157 //fill a rectangular region with SPH paricles on a regular grid, in xy plane
; initial velocity is 0

158 //xll...pos left lower vertex
159 //xru... right upper vertex
160 //h...approximate particle distance / lattice constant (exact if edge

lengths are multiples of h)
161 //dens...density, rad...radius, mass...mass, col...color of all particles
162 void FillRectangle(Vector2D xll, Vector2D xru, double h, MBS* mbs, double

dens, double rad, double mass, const Vector3D col);
163
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164 //fill a rectangular region with SPH paricles on a regular grid, in xy plane
; initial velocity is 0; sets density to mass/(area per particle)

165 //(the apppropriate value of the chosen configuration in 2D - note that mass
in 2D is mass per depth unit)

166 //xll...pos left lower vertex
167 //xru... right upper vertex
168 //h...approximate particle distance / lattice constant (exact if edge

lengths are multiples of h)
169 //rad...radius, mass...mass, col...color of all particles
170 void FillRectangleAutoDensity(Vector2D xll, Vector2D xru, double h, MBS* mbs

, double rad, double mass, const Vector3D col);
171

172 //fill a rectangular region with SPH paricles on a regular grid, in xy plane
; initial velocity is 0; sets mass (i.e. a mass per depth unit in 2D) of
particles to dens*(area per particle)

173 //currently: LIGGGHTS-sided only one constant mass is used for all particles
- it is calculated as an average over all HotInt-sided defined particle

masses
174 //xll...pos left lower vertex
175 //xru... right upper vertex
176 //h...approximate particle distance / lattice constant (exact if edge

lengths are multiples of h)
177 //dens...density, rad...radius, mass...mass, col...color of all particles
178 void FSI_Communication_Element::FillRectangleAutoMass(Vector2D xll, Vector2D

xru, double h, MBS* mbs, double dens, double rad, const Vector3D col);
179

180 //fill a rectangular region with SPH paricles on a regular grid, in xy plane
;

181 //initial velocity is uniformly distributed over [-0.5*v, 0.5*v] in every
component;

182 //mass (i.e. a mass per depth unit in 2D) of particles is set to dens*(area
per particle)

183 //currently: LIGGGHTS-sided only one constant mass is used for all particles
- it is calculated as an average over all HotInt-sided defined particle
masses

184 //xll...pos left lower vertex
185 //xru... right upper vertex
186 //h...approximate particle distance / lattice constant (exact if edge

lengths are multiples of h)
187 //dens...density, rad...radius, mass...mass, col...color of all particles
188 void FSI_Communication_Element::FillRectangleAutoMass(Vector2D xll, Vector2D

xru, double h, MBS* mbs, double dens, double rad, const Vector3D col,
double v);

189
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190 //fill a box with SPH paricles 3D on a regular grid, base face lies parallel
to the xy plane; initial velocity is 0

191 //xll...pos left lower vertex of (rectangular) base
192 //xru... right upper vertex of (rectangular) top face
193 //h...approximate particle distance / lattice constant (exact if edge

lengths are multiples of h)
194 //dens...density, rad...radius, mass...mass, col...color of all particles
195 void FillBox(Vector3D xll, Vector3D xru, double h, MBS* mbs, double dens,

double rad, double mass, const Vector3D col);
196

197 //fill a box with SPH paricles 3D on a regular grid, base face lies parallel
to the xy plane; initial velocity is 0; density is set to mass/(volume

per particle)
198 //xll...pos left lower vertex of (rectangular) base
199 //xru... right upper vertex of (rectangular) top face
200 //h...approximate particle distance / lattice constant (exact if edge

lengths are multiples of h)
201 //rad...radius, mass...mass, col...color of all particles
202 void FillBoxAutoDensity(Vector3D xll, Vector3D xru, double h, MBS* mbs,

double rad, double mass, const Vector3D col);
203

204 //fill a box with SPH paricles 3D on a regular grid, base face lies parallel
to the xy plane; initial velocity is 0; particle mass is set to dens*(

volume per particle)
205 //currently: LIGGGHTS-sided only one constant mass is used for all particles

- it is calculated as an average over all HotInt-sided defined particle
masses

206 //xll...pos left lower vertex of (rectangular) base
207 //xru... right upper vertex of (rectangular) top face
208 //h...approximate particle distance / lattice constant (exact if edge

lengths are multiples of h)
209 //dens...density, rad...radius, mass...mass, col...color of all particles
210 void FSI_Communication_Element::FillBoxAutoMass(Vector3D xll, Vector3D xru,

double h, MBS* mbs, double dens, double rad, const Vector3D col);
211

212 //create a 2D boundary shape by adjacent line segments between points (p1,p2
), (p2,p3), ... (pn-1,pn)

213 //where {p1,....pn} is given by "points"
214 //number is the element number, to which the GeomElements are connected,

width is line width, col...color
215 void CreateBoundary2D(MBS* mbs, int number,TArray<Vector2D> points, double

wi, Vector3D col);
216

217 //import and add a stl-geometry defined in stl_file_name to an element
elemnr as GeomTrig3Ds and use AlternativeShape for this element
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218 //GeomTrig3Ds are registered as surface elements for FSI in
fsi_communication_element, unless the flag AddToCommunicationElement is
set to 0 (default is 1)

219 void AddSTLMeshTrigsToElement(MBS* mbs, int elemnr, mystr stl_file_name,
double stretch_factor, const Vector3D& translation_vec, const Matrix3D&
rotation_mat, const Vector3D& color, double transparency, int
AddToCommunicationElement = 1);

220

221 //add a random offset uniformly distributed over [-0.5*x,0.5*x] to all
particle coordinates

222 void FSI_Communication_Element::randomize_particle_positions(double x);
223

224 //--------------------------------------------------------------------
225

226 // default constructor - deprecated!
227 FSI_Communication_Element() {
228 isinitialized = false;
229 //loadlist.SetDim(3,0);
230 }
231

232 // main constructor - use this one in model function for creating an object
233 // nothing else to be done here
234 // set element properties by Set_FSI_Communication_Element
235 FSI_Communication_Element(MBS * mbs) : Element(mbs) {
236 isinitialized = false;
237 loadlist.SetDim(3,0);
238 }
239

240 // copy constructor
241 FSI_Communication_Element(const FSI_Communication_Element& e) : Element(e.

mbs)
242 {
243 CopyFrom(e);
244 };
245

246 virtual void CopyFrom(const Element& e);
247

248 virtual Element* GetCopy();
249

250 virtual void Initialize();
251

252 virtual void StartTimeStep();
253

254 virtual void EndTimeStep();
255
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256 virtual double PostNewtonStep(double t);
257

258 virtual int Dim() const {return dim;} // dimension of problem
259

260 virtual int DataS() const { return 0; } //old, not in use any more;
nparticles*Dim(); } // size of xdata

261

262 virtual void DrawElement(){}
263

264 // these functions need to be defined just to prevent the program from a
crash (due to inheritance from Element)

265 virtual Vector3D GetPosD() const { return Vector3D(); }
266 virtual Vector3D GetRefPosD() const { return Vector3D(); }
267 };
268

269 #endif
270

271 #pragma endregion

A.7. fsi_communication_element.cpp

1 //#**************************************************************
2 //#
3 //# filename: fsi_ommunication_element.cpp
4 //#
5 //# project: FSI
6 //#
7 //# author: Markus Schoergenhumer, PG, JG
8 //#
9 //# generated: March 2012

10 //# description: Model (master) & communication element for coupled (fluid
structure interaction) simulation with Liggghts

11 //#
12 //# remarks:
13 //#
14 //# This file is part of the program package HOTINT and underlies the

stipulations
15 //# of the scientific or license agreement. It is therefore emphasized not to

copy
16 //# or redistribute this file. The use of this file is only permitted for

academic or scholar
17 //# research. It is forbidden to use any part of this code for military

applications!
18 //# The Developer does not assume any liability for this code or for results

obtained
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19 //# within its use, nor shall he be liable for any direct, indirect, or other
damage

20 //# resulting from use of this code.
21 //#
22 //# bug reports are welcome!!!
23 //# WWW: http://tmech.mechatronik.uni-linz.ac.at/staff/gerstmayr/gerstmayr.

html
24 //# email: jg@jku.at
25 //#**************************************************************
26

27 #include "fsi_communication_element.h"
28

29 #include "MBS_includes_element.h"
30 #include "ExtendedElements/sph_particle2D.h"
31 #include "ExtendedElements/sph_particle3D.h"
32 //#include "csg_geometry.h"
33

34 #include <string>
35 #include <sstream>
36 #include <iostream>
37 #include <fstream>
38 #include <math.h>
39 #include <windows.h>
40

41 using namespace std;
42

43 string convertInt(int number)
44 {
45 stringstream ss;//create a stringstream
46 ss << number;//add number to the stream
47 return ss.str();//return a string with the contents of the stream
48 }
49

50 //this function sorts the lists boundary and loadlist and corresponding
flaglist boundary_flags such, that the first elements have boundary_flags(
i) = 1,

51 //and all remaining subsequent elements have boundary_flags(i)=0
52 //boundary_flags(i) = 0 or 1 corresponds to element boundary(i)
53 //return value is number of elements with flag 0
54 int sort(TArray<int>& boundary, TMatrix<int>& loadlist, TArray<int>&

boundary_flags, int dim){
55 int count = 0;
56 TArray<int> boundary_temp;
57 TMatrix<int> loadlist_temp;
58
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59 for(int flag=1; flag>=0; --flag){
60 for(int i=1; i<=boundary.Length(); ++i){
61 if(boundary_flags(i)==flag){
62 boundary_temp.Add(boundary(i));
63 loadlist_temp.Add(1,loadlist(1,i));
64 loadlist_temp.Add(2,loadlist(2,i));
65 if(dim==3) loadlist_temp.Add(3,loadlist(3,i));
66 }
67 if(boundary_flags(i)==0 && flag==1) ++count;
68 }
69 }
70

71 for(int i=1; i<=boundary.Length()-count; ++i)
72 boundary_flags(i)=1;
73 for(int i=boundary.Length()-count+1; i<=boundary.Length(); ++i)
74 boundary_flags(i)=0;
75

76 boundary=boundary_temp;
77 loadlist=loadlist_temp;
78 return count;
79 }
80

81 // one instance of this element has to be added to mbs (in function
Generate_FSI_04_Markus)

82 // it provides communication via TCP/IP-communication-interface with Liggghts.
83 // - TCP/IP-communication-interface initialized in method Initialize()
84 // - outgoing and incoming data communication processed in method

StartTimeStep()
85 // currently, PostNewtonStep(double t) only does redrawing
86 // finalize called in ComputationFinished()
87 //SPH particle positions are saved in XData inherited from Element
88

89 // these three methods need to be implemented for enabling communication
90 void FSI_Communication_Element::InitializeDataCommunication()
91 {
92

93 double r1[3],v1[3];
94 DataInit initobj(dim);
95

96 //sort boundary and flags such that first all dynamic elements are listed,
then subsequently all static ones

97 nstat = sort(boundary,loadlist,boundary_flags,dim);
98

99 //add random displacements to particles, if deltax was set to a value >0
100 if(deltax>0) randomize_particle_positions(deltax);
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101

102 // initialize communication interface
103

104 //create DataInit instance locally and initialize SPH with data from
SPHParticle2D (numbers stored in Tarray sph)

105 //initialize a DataH object (inclusion as member in this class)
106

107 if(dim == 2){
108

109 Vector2D rvtemp;
110 GeomElement* temp;
111

112 //create r,v, el
113 r1[2]=0.0;
114 v1[2]=0.0;
115

116 //first add all dynamic (non-static points), then add all static points (
boundary array must have been sorted previously)

117 for(int j=1; j<=boundary.Length(); ++j){
118 temp = mbs->GetDrawElement(boundary(j));
119 for(int k=1; k<=2; ++k){ //2 points for 2D case / GeomLine2D
120 rvtemp = GetGlobPos2D(temp,k);
121 r1[0]=rvtemp(1);
122 r1[1]=rvtemp(2);
123 rvtemp = GetGlobVel2D(temp,k);
124 v1[0]=rvtemp(1);
125 v1[1]=rvtemp(2);
126 initobj.add_point(r1,v1);
127 /*
128 //now this is done directly in AddGeomLine2D
129 //create and add loads, initialized with 0.0, and create loadlist --

loads still have to be linked to elements (see below)
130 if(temp->GetElnum()!=0){
131 load.SetForceVector2D(Vector2D(0.0,0.0),temp->GetLocPoint2D(k));
132 const_cast<Element&>(temp->GetElement()).AddLoad(load);
133 loadlist.Add(k,temp->GetElement().NLoads());
134 }
135 */
136 }
137 initobj.add_elem(initobj.n-2,initobj.n-1);
138 //GeomElement with the number boundary(j) corresponds to el[j-1] in DataH

(shift of 1 because counting starts from 1 in TArray boundary, but
from 0 in el)

139 }
140
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141 //set number of static boundary points
142 initobj.set_nstat(nstat*2);
143

144 //create rSPH, vSPH
145 for(int i=1; i<=nparticles; ++i){
146 rvtemp=GetParticlePos2D(i);
147 r1[0]=rvtemp(1);
148 r1[1]=rvtemp(2);
149 rvtemp=GetParticleVel2D(i);
150 v1[0]=rvtemp(1); //velocities of SPH particles are initialized to 0
151 v1[1]=rvtemp(2);
152 initobj.add_pointSPH(r1,v1);
153 }
154 }
155 else if(dim == 3){
156

157 Vector3D rvtemp;
158 GeomElement* temp;
159 int tcount = 0;
160

161 //create r,v,el
162 //first add all dynamic (non-static points), then add all static points (

boundary array must have been sorted previously)
163 for(int j=1; j<=boundary.Length(); ++j){
164 temp = mbs->GetDrawElement(boundary(j));
165 for(int k=1; k<=3; ++k){ //2 points for 2D case / GeomLine2D
166 rvtemp = GetGlobPos3D(temp,k);
167 r1[0]=rvtemp(1);
168 r1[1]=rvtemp(2);
169 r1[2]=rvtemp(3);
170 rvtemp = GetGlobVel3D(temp,k);
171 v1[0]=rvtemp(1);
172 v1[1]=rvtemp(2);
173 v1[2]=rvtemp(3);
174 initobj.add_point(r1,v1);
175 }
176 initobj.add_elem(initobj.n-3,initobj.n-2,initobj.n-1);
177 //GeomElement with the number boundary(j) corresponds to el[j-1] in DataH

(shift of 1 because counting starts from 1 in TArray boundary, but
from 0 in el)

178 }
179

180 //set number of static boundary points
181 initobj.set_nstat(nstat*3);
182
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183 //create rSPH, vSPH
184 for(int i=1; i<=nparticles; ++i){
185 rvtemp=GetParticlePos3D(i);
186 r1[0]=rvtemp(1);
187 r1[1]=rvtemp(2);
188 r1[2]=rvtemp(3);
189 rvtemp=GetParticleVel3D(i);
190 v1[0]=rvtemp(1); //velocities of SPH particles are initialized to 0
191 v1[1]=rvtemp(2);
192 v1[2]=rvtemp(3);
193 initobj.add_pointSPH(r1,v1);
194 }
195

196 }
197 else
198 {
199 mbs->UO(UO_LVL_warn) << "warning: FSI_Communication_Element is implemented

for 2D-case or 3D-case only!\n";
200 }
201 assert( Dim() == 2 || Dim() == 3 );
202

203 /*
204 //since loads are added now directly in AddGeomLine2D in the model file,

this is already done in Assemble()
205 //link loads to elements (normally this is done in MBS::Assemble() in the

model file -- should Assemble be called here to be sure?)
206 for(int i=1; i<=mbs->NE(); ++i){
207 mbs->GetElement(i).LinkLoads();
208 }
209 */
210

211 //initialize DataH instance dataobj, set up TCP connection, ...
212 //dataobj.init(initobj,inscript,initTCP);//actual initialization procedure

of DataH instance, and Linux-sided DataL instance(s) with LAMMPS instance
(s)

213

214 double averageSPHmass = 0.;
215 for(int i=1; i<=sph.Length(); ++i){
216 averageSPHmass+=mbs->GetElement(sph(i)).GetMass();
217 }
218 averageSPHmass/=double(sph.Length());
219

220 dataobj.init(initobj,edc,inputscript,mbs,averageSPHmass);
221 isinitialized = true;
222
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223 //initialize densities; v and r have already been initialized in DataInit
object

224 if(dim == 2){
225 for(int i=0; i<nparticles; ++i){
226 dataobj.setrohSPH(i,GetParticleDensity2D(i+1));
227 }
228 }
229 else if(dim == 3){
230 for(int i=0; i<nparticles; ++i){
231 dataobj.setrohSPH(i,GetParticleDensity3D(i+1));
232 }
233 }
234 else
235 {
236 mbs->UO(UO_LVL_warn) << "warning: FSI_Communication_Element is implemented

for 2D-case or 3D-case only!\n";
237 }
238 assert( Dim() == 2 || Dim() == 3 );
239

240 dataobj.sendrohSPH();
241

242 mbs->UO()<< mystr("Total number of SPH particles: ")+mystr(int(dataobj.nSPH)
)+mystr("\n");

243 mbs->UO()<< mystr("with averaged constant mass (mass per depth unit) in 3D
(2D) of ")+mystr(averageSPHmass)+mystr(" kg (kg/m)")+mystr("\n");

244 mbs->UO()<< mystr("and nominal density of ")+mystr(edc->TreeGetDouble("
LIGGGHTS_SPH_parameters.SPHdensity"))+mystr(" kg/m^3")+mystr("\n");

245 mbs->UO()<< mystr("Total number of surface elements for FSI: ")+mystr(int(
dataobj.nel))+mystr("\n");

246 mbs->UO()<< mystr("Total number of FSI surface points: ")+mystr(int(dataobj.
n))+mystr("\n");

247 mbs->UO()<< mystr("Number of static FSI surface points: ")+mystr(int(dataobj
.nstat))+mystr("\n");

248

249 //dataobj.set_timestep(mbs->GetStepSize()); //set size of time step for the
following steps

250 dataobj.set_timestep(1E-5);
251 dataobj.sendone(string("run ").append(convertInt(nequi))); // initialization

and initial configuration with "run 0";
252 //"run x" (x a positive integer) will run x LIGGGHTS steps with constant (

initial) boundaries (e.g. for equilibration)
253 //here a very large viscosity is used
254 ResetVisc(); //set viscosity to actual value
255 dataobj.sendone("run 0"); //recalculate forces and densities for actual

viscosity before moving on to timestepping

179



APPENDIX A. C++ SOURCE CODE

256

257 }
258

259 void FSI_Communication_Element::IncomingDataCommunication(int step)
260 {
261 static int stepcount = 0;
262 ++stepcount;
263

264 if(dim == 2){
265

266 // incoming data communication
267

268 //get full SPH data set only in time intervals solset.storedata (in which
the solution is stored)

269 //else: only forces (minimal data transfer), in given intervals (numbers of
timesteps)

270

271 //see also int TimeInt::StoreResultsIsOn()
272

273 if(mbs->GetSolSet().storedata == 0)
274 dataobj.send_command("dummy");
275 else if(mbs->GetSolSet().storedata == -2){
276 dataobj.send_command("send SPH");
277 //write current SPH data to XData via SPHParticle2D::SetAllData(...)
278 for(int i=1; i<=nparticles; ++i)
279 SetParticleData2D(i,Vector2D(dataobj.rSPH(i-1,0),dataobj.rSPH(i-1,1)),

Vector2D(dataobj.vSPH(i-1,0),dataobj.vSPH(i-1,1)),dataobj.rohSPH(i
-1));

280 }
281 else if(mbs->GetSolSet().storedata == -1 && (mbs->GetTime()+ mbs->

GetStepSize() + 0.1*mbs->GetSolSet().minstepsize >= mbs->laststoredata
+ mbs->GetSolSet().maxstepsize)){

282 dataobj.send_command("send SPH");
283 //write current SPH data to XData via SPHParticle2D::SetAllData(...)
284 for(int i=1; i<=nparticles; ++i)
285 SetParticleData2D(i,Vector2D(dataobj.rSPH(i-1,0),dataobj.rSPH(i-1,1)),

Vector2D(dataobj.vSPH(i-1,0),dataobj.vSPH(i-1,1)),dataobj.rohSPH(i
-1));

286 }
287 else if(mbs->GetSolSet().storedata > 0 && (mbs->GetTime()+ mbs->GetStepSize

()+ 0.1*mbs->GetSolSet().minstepsize) >= mbs->laststoredata + mbs->
GetSolSet().storedata){

288 dataobj.send_command("send SPH");
289 //write current SPH data to XData via SPHParticle2D::SetAllData(...)
290 for(int i=1; i<=nparticles; ++i)
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291 SetParticleData2D(i,Vector2D(dataobj.rSPH(i-1,0),dataobj.rSPH(i-1,1)),
Vector2D(dataobj.vSPH(i-1,0),dataobj.vSPH(i-1,1)),dataobj.rohSPH(i
-1));

292 }
293 else
294 dataobj.send_command("dummy");
295

296 //if(stepcount == edc->TreeGetInt("HOTINT_SPH_parameters.exchangeperiod"))
297 if(1){
298 dataobj.send_command("send f");
299 //apply forces in DataH::f appropriately to all non-static elements (

elementnr != 0)
300 for(int i=1; i<=boundary.Length()-nstat; ++i)
301 for(int k=1; k<=2; ++k){
302 ApplyForce2D(i,k);
303 }
304

305 stepcount = 0;
306 }
307 else{
308 dataobj.send_command("dummy");
309 }
310

311 }
312 else if(dim == 3){
313

314 //compare to completely analogous dim==2 case
315

316 //TMStartTimer(30);
317

318 if(mbs->GetSolSet().storedata == 0){
319 dataobj.send_command("dummy");
320 }
321 else if(mbs->GetSolSet().storedata == -2){
322 dataobj.send_command("send SPH");
323

324 //write current (updated) SPH data to XData via SPHParticle2D::SetAllData
(...)

325 for(int i=1; i<=nparticles; ++i)
326 SetParticleData3D(i,Vector3D(dataobj.rSPH(i-1,0),dataobj.rSPH(i-1,1),

dataobj.rSPH(i-1,2)),Vector3D(dataobj.vSPH(i-1,0),dataobj.vSPH(i
-1,1),dataobj.vSPH(i-1,2)),dataobj.rohSPH(i-1));

327 }
328 else if(mbs->GetSolSet().storedata == -1 && (mbs->GetTime()+ mbs->

GetStepSize() + 0.1*mbs->GetSolSet().minstepsize >= mbs->laststoredata
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+ mbs->GetSolSet().maxstepsize)){
329 dataobj.send_command("send SPH");
330 //write current (updated) SPH data to XData via SPHParticle2D::SetAllData

(...)
331 for(int i=1; i<=nparticles; ++i)
332 SetParticleData3D(i,Vector3D(dataobj.rSPH(i-1,0),dataobj.rSPH(i-1,1),

dataobj.rSPH(i-1,2)),Vector3D(dataobj.vSPH(i-1,0),dataobj.vSPH(i
-1,1),dataobj.vSPH(i-1,2)),dataobj.rohSPH(i-1));

333 }
334 else if(mbs->GetSolSet().storedata > 0 && (mbs->GetTime()+ mbs->GetStepSize

()+ 0.1*mbs->GetSolSet().minstepsize) >= mbs->laststoredata + mbs->
GetSolSet().storedata){

335 dataobj.send_command("send SPH");
336 //write current (updated) SPH data to XData via SPHParticle2D::SetAllData

(...)
337 for(int i=1; i<=nparticles; ++i)
338 SetParticleData3D(i,Vector3D(dataobj.rSPH(i-1,0),dataobj.rSPH(i-1,1),

dataobj.rSPH(i-1,2)),Vector3D(dataobj.vSPH(i-1,0),dataobj.vSPH(i
-1,1),dataobj.vSPH(i-1,2)),dataobj.rohSPH(i-1));

339 }
340 else
341 dataobj.send_command("dummy");
342

343 //TMStopTimer(30);
344

345 //if(stepcount == edc->TreeGetInt("HOTINT_SPH_parameters.exchangeperiod"))
346 if(1){
347 dataobj.send_command("send f");
348 //apply forces in DataH::f appropriately to all non-static elements (

elementnr != 0)
349 for(int i=1; i<=boundary.Length()-nstat; ++i)
350 for(int k=1; k<=3; ++k){
351 ApplyForce3D(i,k);
352 }
353

354 stepcount = 0;
355 }
356 else{
357 dataobj.send_command("dummy");
358 }
359 }
360 else
361 {
362 mbs->UO(UO_LVL_warn) << "warning: FSI_Communication_Element is implemented

for 2D-case or 3D-case only!\n";
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363 }
364 assert( Dim() == 2 || Dim() == 3 );
365

366 }
367

368 double FSI_Communication_Element::OutgoingDataCommunication()
369 {
370 static int stepcount = 0;
371 ++stepcount;
372

373 // set timestep
374 dataobj.set_timestep(mbs->GetStepSize());
375

376 //if(stepcount == edc->TreeGetInt("HOTINT_SPH_parameters.exchangeperiod"))
377 if(1){
378

379 if(dim == 2){
380

381 Vector2D rvtemp;
382 GeomElement* temp;
383 int p1;
384

385 // outgoing data communication
386

387 //update rv, except for static elements
388 for(int i=1; i<=boundary.Length()-nstat; ++i){
389 temp=mbs->GetDrawElement(boundary(i));
390 for(int j=1; j<=2; ++j){
391 rvtemp=GetGlobPos2D(temp,j);
392 p1=dataobj.el(i-1,j-1);
393 dataobj.setr(p1,0,rvtemp(1));
394 dataobj.setr(p1,1,rvtemp(2));
395 rvtemp=GetGlobVel2D(temp,j);
396 dataobj.setv(p1,0,rvtemp(1));
397 dataobj.setv(p1,1,rvtemp(2));
398 }
399 }
400

401 }
402 else if(dim == 3){
403

404 Vector3D rvtemp;
405 GeomElement* temp;
406 int p1;
407
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408 // outgoing data communication
409

410 //update rv, except for static elements
411 for(int i=1; i<=boundary.Length()-nstat; ++i){
412 temp=mbs->GetDrawElement(boundary(i));
413 for(int j=1; j<=3; ++j){
414 rvtemp=GetGlobPos3D(temp,j);
415 p1=dataobj.el(i-1,j-1);
416 dataobj.setr(p1,0,rvtemp(1));
417 dataobj.setr(p1,1,rvtemp(2));
418 dataobj.setr(p1,2,rvtemp(3));
419 rvtemp=GetGlobVel3D(temp,j);
420 dataobj.setv(p1,0,rvtemp(1));
421 dataobj.setv(p1,1,rvtemp(2));
422 dataobj.setv(p1,2,rvtemp(3));
423 }
424 }
425

426 }
427 else
428 {
429 mbs->UO(UO_LVL_warn) << "warning: FSI_Communication_Element is

implemented for 2D-case or 3D-case only!\n";
430 }
431 assert( Dim() == 2 || Dim() == 3 );
432

433 //sendrv and sendone
434

435 TMStartTimer(28);
436

437 dataobj.send_command("recv rv");
438 // mbs->UO() << dataobj.r(0,0) << "\n";
439

440 TMStopTimer(28);
441

442 stepcount = 0;
443 }
444 else{
445 dataobj.send_command("dummy");
446 }
447

448 dataobj.sendone("run 1 pre no post no"); //difference to "run 1": neighbor
lists, forces,... are not recalculated, because still valid from previous
step (except for very first step);

449 // full timing statistics are not printed
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450 return 0.;
451 }
452

453 void FSI_Communication_Element::Finalize(){
454 //send termination string sendone("qqqq");
455 //exchange timing / error messages etc...
456

457 dataobj.set_timestep(mbs->GetStepSize()); //this and the next line are just
for synchronization reasons

458 dataobj.send_command("dummy");
459 dataobj.sendone("qqqq");
460 dataobj.closeTCP(); //is done in destructor again... possible errors?
461 isinitialized=false;
462

463 }
464

465 // set element properties from outside via this method
466 void FSI_Communication_Element::Set_FSI_Communication_Element(int dim, int

nequi, ElementDataContainer* edc, std::string& inputscript, double deltax)
467 {
468 isinitialized = false;
469 FSI_Communication_Element::nequi = nequi;
470

471 FSI_Communication_Element::dim = dim;
472 FSI_Communication_Element::nparticles = sph.Length();
473

474 FSI_Communication_Element::edc = edc;
475 FSI_Communication_Element::inputscript = inputscript;
476

477 FSI_Communication_Element::deltax = deltax;
478

479 if (Dim() != 2 && Dim() != 3)
480 {
481 mbs->UO(UO_LVL_warn) << "warning: FSI_Communication_Element is implemented

for 2D-case or 3D-case only!\n";
482 }
483 assert( Dim() == 2 || Dim() == 3 );
484 }
485

486 //data access SPH particles 2D
487

488 void FSI_Communication_Element::SetParticleData2D(int i, Vector2D& r, Vector2D
& v, double rho){

489 (reinterpret_cast<SPHParticle2D*>(&(mbs->GetElement(sph(i)))))->SetAllData(r
.X(), r.Y(), v.X(), v.Y(), rho);
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490 }
491

492 void FSI_Communication_Element::SetParticlePos2D(int i, Vector2D& r){
493 (reinterpret_cast<SPHParticle2D*>(&(mbs->GetElement(sph(i)))))->SetPosition(

r.X(), r.Y());
494 }
495

496 Vector2D FSI_Communication_Element::GetParticlePos2D(int i){
497 return mbs->GetElement(sph(i)).GetRefPos2D();
498 }
499

500 Vector2D FSI_Communication_Element::GetParticleVel2D(int i){
501 //return Vector2D(0.,0.); //for testing ONLY
502 return mbs->GetElement(sph(i)).GetRefVel2D();
503 }
504

505 double FSI_Communication_Element::GetParticleDensity2D(int i){
506 return (reinterpret_cast<SPHParticle2D*>(&(mbs->GetElement(sph(i)))))->

GetDensity();
507 }
508

509 //data access SPH particles 3D
510

511 void FSI_Communication_Element::SetParticleData3D(int i, Vector3D& r, Vector3D
& v, double rho){

512 (reinterpret_cast<SPHParticle3D*>(&(mbs->GetElement(sph(i)))))->SetAllData(r
.X(), r.Y(), r.Z(), v.X(), v.Y(), v.Z(), rho);

513 }
514

515 void FSI_Communication_Element::SetParticlePos3D(int i, Vector3D& r){
516 (reinterpret_cast<SPHParticle3D*>(&(mbs->GetElement(sph(i)))))->SetPosition(

r.X(), r.Y(), r.Z());
517 }
518

519 Vector3D FSI_Communication_Element::GetParticlePos3D(int i){
520 return mbs->GetElement(sph(i)).GetRefPos();
521 }
522

523 Vector3D FSI_Communication_Element::GetParticleVel3D(int i){
524 return mbs->GetElement(sph(i)).GetRefVel();
525 }
526

527 double FSI_Communication_Element::GetParticleDensity3D(int i){
528 return (reinterpret_cast<SPHParticle3D*>(&(mbs->GetElement(sph(i)))))->

GetDensity();
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529 }
530

531 //add one SPH particle in 2D
532 void FSI_Communication_Element::AddSPH2D(MBS* mbs, const Vector& xg5, double

radius, double mass, const Vector3D& color){
533 int nr;
534 SPHParticle2D particle2d(mbs, xg5, radius, mass, color);
535 nr = mbs->AddElement(&particle2d);
536 sph.Add(nr);
537 }
538

539 //add one SPH particle in 3D
540 void FSI_Communication_Element::AddSPH3D(MBS* mbs, const Vector& xg7, double

radius, double mass, const Vector3D& color){
541 int nr;
542 SPHParticle3D particle3d(mbs, xg7, radius, mass, color);
543 nr = mbs->AddElement(&particle3d);
544 sph.Add(nr);
545 }
546

547 //returns the global position of the k-th point of a GeomElement temp
548 Vector2D FSI_Communication_Element::GetGlobPos2D(GeomElement* temp, int k){
549 Vector2D rvtemp;
550 if(temp->GetElnum()==0) //check if element is fixed to the ground - no

coordinate transformation necessary
551 rvtemp=temp->GetLocPoint2D(k);
552 else
553 rvtemp=temp->GetBody2D().GetPos2D(temp->GetLocPoint2D(k));
554 return rvtemp;
555 }
556

557 //returns the global position of the k-th point of a GeomElement temp
558 Vector3D FSI_Communication_Element::GetGlobPos3D(GeomElement* temp, int k){
559 Vector3D rvtemp;
560 if(temp->GetElnum()==0) //check if element is fixed to the ground - no

coordinate transformation necessary
561 rvtemp=temp->GetLocPoint(k);
562 else
563 rvtemp=temp->GetBody3D().GetPos(temp->GetLocPoint(k));
564 return rvtemp;
565 }
566

567 //returns the global velocity of the k-th point of a GeomElement temp
568 Vector2D FSI_Communication_Element::GetGlobVel2D(GeomElement* temp, int k){
569 Vector2D rvtemp;
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570 if(temp->GetElnum()==0) //check if element is fixed to the ground - no
coordinate transformation necessary

571 rvtemp=Vector2D(0.0,0.0);
572 else
573 rvtemp=temp->GetBody2D().GetVel2D(temp->GetLocPoint2D(k));
574 return rvtemp;
575 }
576

577 //returns the global velocity of the k-th point of a GeomElement temp
578 Vector3D FSI_Communication_Element::GetGlobVel3D(GeomElement* temp, int k){
579 Vector3D rvtemp;
580 if(temp->GetElnum()==0) //check if element is fixed to the ground - no

coordinate transformation necessary
581 rvtemp=Vector3D(0.0,0.0,0.0);
582 else
583 rvtemp=temp->GetBody3D().GetVel(temp->GetLocPoint(k));
584 return rvtemp;
585 }
586

587 //apply the force from boundary point DataH el(i-1,k-1) to corresponding point
k of GeomElement with number boundary(i)

588 void FSI_Communication_Element::ApplyForce2D(int i, int k){
589 int p1;
590 p1=dataobj.el(i-1,k-1);
591

592 if (i > boundary.Length()) {assert(0 && "ApplyForce::boundary index problem"
);}

593 if (mbs->NDrawElements() < boundary(i)) {assert(0 && "ApplyForce::boundary i
larger than ndrawelements");}

594

595 //if(mbs->GetDrawElement(boundary(i))->GetElnum()!=0){ //this may be omitted
only if it is certain that this function is not called for elements
fixed to ground / MBS

596 if(1){
597

598 if (loadlist.Length() < k || loadlist.NCols(k) < i) {assert(0 && "
ApplyForce::loadlist index problem!");}

599 if (mbs->GetDrawElement(boundary(i))->NP() < k) {assert(0 && "ApplyForce::
locpoints problem");}

600 if (mbs->GetDrawElement(boundary(i))->GetElement().NLoads() < loadlist(k,i)
) {assert(0 && "ApplyForce::nloads < loadlist(k,i)");}

601

602 ((MBSLoad&)(mbs->GetDrawElement(boundary(i))->GetElement()).GetLoad(
loadlist(k,i))).
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603 SetForceVector2D(Vector2D(dataobj.f(p1,0),dataobj.f(p1,1)),mbs->
GetDrawElement(boundary(i))->GetLocPoint2D(k));

604 }
605 }
606

607 //apply the force from boundary point DataH el(i-1,k-1) to corresponding point
k of GeomElement with number boundary(i)

608 void FSI_Communication_Element::ApplyForce3D(int i, int k){
609 int p1;
610 p1=dataobj.el(i-1,k-1);
611

612 //if(mbs->GetDrawElement(boundary(i))->GetElnum()!=0){ //this may be omitted
only if it is certain that this function is not called for elements

fixed to ground / MBS
613 if(1){
614

615 ((MBSLoad&)(mbs->GetDrawElement(boundary(i))->GetElement()).GetLoad(
loadlist(k,i))).

616 SetForceVector3D(Vector3D(dataobj.f(p1,0),dataobj.f(p1,1),dataobj.f(p1,2)
),mbs->GetDrawElement(boundary(i))->GetLocPoint(k));

617 }
618 }
619

620 //add a GeomLine2D as boundary element
621 void FSI_Communication_Element::AddGeomLine2D(GeomLine2D& line){
622 int nr;
623 MBSLoad load;
624 if(line.GetElnum()==0){
625 nr = mbs->Add(line); //add Geomline to MBS (fixed to ground)
626 boundary_flags.Add(0);
627 }
628 else{
629 const_cast<Element&>(line.GetElement()).Add(line); //add GeomLine connected

to element line.GetElement() to MBS and add nr to the TArray<int>
Element::drawelements

630 nr = mbs->NDrawElements();
631 boundary_flags.Add(1);
632 }
633 boundary.Add(nr); //access to the drawelement via mbs->GetDrawElement(nr)

with nr given by the Tarray boundary
634

635 if(line.GetElnum()!=0){
636 for(int k=1; k<=2; k++){
637 load.SetForceVector2D(Vector2D(0.0,0.0),line.GetLocPoint2D(k));
638 const_cast<Element&>(line.GetElement()).AddLoad(load);
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639 loadlist.Add(k,line.GetElement().NLoads()); //access to load on point k
of drawelement mbs->GetDrawElement(nr==boundary(i)) acting on
connected element

640 //mbs->GetDrawElement(nr).GetElement() via mbs->GetDrawElement(boundary(i
)).GetElement().GetLoad(loadlist(k,i))

641 }
642 }else{
643 for(int k=1; k<=2; k++){
644 loadlist.Add(k,0); //dummy entry
645 }
646 }
647

648 }
649

650 //add a GeomTrig3D as boundary element
651 void FSI_Communication_Element::AddGeomTrig3D(GeomTrig3D& trig){
652 int nr;
653 MBSLoad load;
654 if(trig.GetElnum()==0){
655 nr = mbs->Add(trig); //add Geomline to MBS (fixed to ground)
656 boundary_flags.Add(0);
657 }
658 else{
659 const_cast<Element&>(trig.GetElement()).Add(trig); //add GeomLine connected

to element line.GetElement() to MBS and add nr to the TArray<int>
Element::drawelements

660 nr = mbs->NDrawElements();
661 boundary_flags.Add(1);
662 }
663 boundary.Add(nr); //access to the drawelement via mbs->GetDrawElement(nr)

with nr given by the Tarray boundary
664

665 if(trig.GetElnum()!=0){
666 for(int k=1; k<=3; k++){
667 load.SetForceVector3D(Vector3D(0.0,0.0,0.0),trig.GetLocPoint(k));
668 const_cast<Element&>(trig.GetElement()).AddLoad(load);
669 loadlist.Add(k,trig.GetElement().NLoads()); //access to load on point k

of drawelement mbs->GetDrawElement(nr==boundary(i)) acting on
connected element

670 //mbs->GetDrawElement(nr).GetElement() via mbs->GetDrawElement(boundary(i
)).GetElement().GetLoad(loadlist(k,i))

671 }
672 }else{
673 for(int k=1; k<=3; k++){
674 loadlist.Add(k,0); //dummy entry
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675 }
676 }
677

678 }
679

680 //functions that use variables defined in the LIGGGHTS input scripts
681 //------------------------------------------------------------------
682 //reset pair_style with actual viscosity
683 void FSI_Communication_Element::ResetVisc(){
684 if(dim == 2)
685 dataobj.sendone("pair_style sph spiky2D ${smoothinglength} artVisc ${alpha

} 0. ${cAB} ${eta} #tensCorr 0.2");
686 //dataobj.sendone("pair_style sph cubicspline_2D ${smoothinglength} artVisc

${alphatemp} 0. ${cAB} ${eta} #tensCorr 0.2");
687 //variables used in this commands of course must have been defined

previously in the input script or txt
688 else if(dim == 3)
689 //dataobj.sendone("pair_style sph cubicspline ${smoothinglength} artVisc $

{alpha} 0. ${cAB} ${eta} #tensCorr 0.2");
690 dataobj.sendone("pair_style sph spiky ${smoothinglength} artVisc ${alpha}

0. ${cAB} ${eta} #tensCorr 0.2");
691 //variables used in this commands of course must have been defined

previously in the input script or txt
692 }
693

694 //------------------------------------------------------------------
695

696 //functions for particle and boundary creation in the model file
697 //------------------------------------------------------------------
698

699 //NOTE: currently LIGGGHTS-sided only one constant mass is used for all
particles - it is calculated as an average over all HotInt-sided defined
particle masses!!

700

701 //fill a rectangular region with SPH paricles on a regular grid, in xy plane;
initial velocity is 0

702 //xll...pos left lower vertex
703 //xru... right upper vertex
704 //h...approximate particle distance / lattice constant (exact if edge lengths

are multiples of h)
705 //dens...density, rad...radius, mass...mass, col...color of all particles
706 void FSI_Communication_Element::FillRectangle(Vector2D xll, Vector2D xru,

double h, MBS* mbs, double dens, double rad, double mass, const Vector3D
col){

707 int nx=int(floor(fabs(xll.X()-xru.X())/h));
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708 int ny=int(floor(fabs(xll.Y()-xru.Y())/h));
709 double dx= fabs(xll.X()-xru.X())/double(nx);
710 double dy= fabs(xll.Y()-xru.Y())/double(ny);
711 if(nx==0) dx = fabs(xll.X()-xru.X());
712 if(ny==0) dy = fabs(xll.Y()-xru.Y());
713 for(int i=0; i<=nx; ++i)
714 for(int j=0; j<=ny; ++j)
715 AddSPH2D(mbs,Vector(xll.X()+i*dx,xll.Y()+j*dy,0.0,0.0,dens),rad,mass,col)

;
716 mbs->UO()<< (nx+1)*(ny+1) << " SPH particles created \n";
717 }
718

719 //fill a rectangular region with SPH paricles on a regular grid, in xy plane;
initial velocity is 0; sets density to mass/(area per particle)

720 //(the apppropriate value of the chosen configuration in 2D - note that mass
in 2D is mass per depth unit)

721 //xll...pos left lower vertex
722 //xru... right upper vertex
723 //h...approximate particle distance / lattice constant (exact if edge lengths

are multiples of h)
724 //rad...radius, mass...mass, col...color of all particles
725 void FSI_Communication_Element::FillRectangleAutoDensity(Vector2D xll,

Vector2D xru, double h, MBS* mbs, double rad, double mass, const Vector3D
col){

726 int nx=int(floor(fabs(xll.X()-xru.X())/h));
727 int ny=int(floor(fabs(xll.Y()-xru.Y())/h));
728 double dx= fabs(xll.X()-xru.X())/double(nx);
729 double dy= fabs(xll.Y()-xru.Y())/double(ny);
730 if(nx==0) dx = fabs(xll.X()-xru.X());
731 if(ny==0) dy = fabs(xll.Y()-xru.Y());
732 double dens = mass/(dx*dy);
733 for(int i=0; i<=nx; ++i)
734 for(int j=0; j<=ny; ++j)
735 AddSPH2D(mbs,Vector(xll.X()+i*dx,xll.Y()+j*dy,0.0,0.0,dens),rad,mass,col)

;
736 mbs->UO()<< (nx+1)*(ny+1) << " SPH particles created \n";
737 }
738

739 //fill a rectangular region with SPH paricles on a regular grid, in xy plane;
initial velocity is 0; sets mass (i.e. a mass per depth unit in 2D) of
particles to dens*(area per particle)

740 //currently: LIGGGHTS-sided only one constant mass is used for all particles -
it is calculated as an average over all HotInt-sided defined particle

masses
741 //xll...pos left lower vertex
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742 //xru... right upper vertex
743 //h...approximate particle distance / lattice constant (exact if edge lengths

are multiples of h)
744 //dens...density, rad...radius, mass...mass, col...color of all particles
745 void FSI_Communication_Element::FillRectangleAutoMass(Vector2D xll, Vector2D

xru, double h, MBS* mbs, double dens, double rad, const Vector3D col){
746 int nx=int(floor(fabs(xll.X()-xru.X())/h));
747 int ny=int(floor(fabs(xll.Y()-xru.Y())/h));
748 double dx= fabs(xll.X()-xru.X())/double(nx);
749 double dy= fabs(xll.Y()-xru.Y())/double(ny);
750 if(nx==0) dx = fabs(xll.X()-xru.X());
751 if(ny==0) dy = fabs(xll.Y()-xru.Y());
752 double mass = dens*dx*dy;
753 for(int i=0; i<=nx; ++i)
754 for(int j=0; j<=ny; ++j)
755 AddSPH2D(mbs,Vector(xll.X()+i*dx,xll.Y()+j*dy,0.0,0.0,dens),rad,mass,col)

;
756 mbs->UO()<< (nx+1)*(ny+1) << " SPH particles created \n";
757 }
758

759 //fill a rectangular region with SPH paricles on a regular grid, in xy plane;
760 //initial velocity is uniformly distributed over [-0.5*v, 0.5*v] in every

component;
761 //mass (i.e. a mass per depth unit in 2D) of particles is set to dens*(area

per particle)
762 //currently: LIGGGHTS-sided only one constant mass is used for all particles -

it is calculated as an average over all HotInt-sided defined particle
masses

763 //xll...pos left lower vertex
764 //xru... right upper vertex
765 //h...approximate particle distance / lattice constant (exact if edge lengths

are multiples of h)
766 //dens...density, rad...radius, mass...mass, col...color of all particles
767 void FSI_Communication_Element::FillRectangleAutoMass(Vector2D xll, Vector2D

xru, double h, MBS* mbs, double dens, double rad, const Vector3D col,
double v){

768 int nx=int(floor(fabs(xll.X()-xru.X())/h));
769 int ny=int(floor(fabs(xll.Y()-xru.Y())/h));
770 double dx= fabs(xll.X()-xru.X())/double(nx);
771 double dy= fabs(xll.Y()-xru.Y())/double(ny);
772 if(nx==0) dx = fabs(xll.X()-xru.X());
773 if(ny==0) dy = fabs(xll.Y()-xru.Y());
774 double mass = dens*dx*dy;
775 srand(time(NULL));
776 double rm = double(RAND_MAX);
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777 for(int i=0; i<=nx; ++i)
778 for(int j=0; j<=ny; ++j)
779 AddSPH2D(mbs,Vector(xll.X()+i*dx,xll.Y()+j*dy,v*(rand()/rm-0.5),v*(rand()

/rm-0.5),dens),rad,mass,col);
780 mbs->UO()<< (nx+1)*(ny+1) << " SPH particles created \n";
781 }
782

783 //fill a box with SPH paricles 3D on a regular grid, base face lies parallel
to the xy plane; initial velocity is 0

784 //xll...pos left lower vertex of (rectangular) base
785 //xru... right upper vertex of (rectangular) top face
786 //h...approximate particle distance / lattice constant (exact if edge lengths

are multiples of h)
787 //dens...density, rad...radius, mass...mass, col...color of all particles
788 void FSI_Communication_Element::FillBox(Vector3D xll, Vector3D xru, double h,

MBS* mbs, double dens, double rad, double mass, const Vector3D col){
789 int nx=int(floor(fabs(xll.X()-xru.X())/h));
790 int ny=int(floor(fabs(xll.Y()-xru.Y())/h));
791 int nz=int(floor(fabs(xll.Z()-xru.Z())/h));
792 double dx= fabs(xll.X()-xru.X())/double(nx);
793 double dy= fabs(xll.Y()-xru.Y())/double(ny);
794 double dz= fabs(xll.Z()-xru.Z())/double(nz);
795 if(nx==0) dx = fabs(xll.X()-xru.X());
796 if(ny==0) dy = fabs(xll.Y()-xru.Y());
797 if(nz==0) dy = fabs(xll.Z()-xru.Z());
798 for(int i=0; i<=nx; ++i)
799 for(int j=0; j<=ny; ++j)
800 for(int k=0; k<=nz; ++k)
801 AddSPH3D(mbs,Vector(xll.X()+i*dx,xll.Y()+j*dy,xll.Z()+k*dz,0.0,0.0,0.0,

dens),rad,mass,col);
802 mbs->UO()<< (nx+1)*(ny+1)*(nz+1) << " SPH particles created \n";
803 }
804

805 //fill a box with SPH paricles 3D on a regular grid, base face lies parallel
to the xy plane; initial velocity is 0; density is set to mass/(volume per
particle)

806 //xll...pos left lower vertex of (rectangular) base
807 //xru... right upper vertex of (rectangular) top face
808 //h...approximate particle distance / lattice constant (exact if edge lengths

are multiples of h)
809 //rad...radius, mass...mass, col...color of all particles
810 void FSI_Communication_Element::FillBoxAutoDensity(Vector3D xll, Vector3D xru,

double h, MBS* mbs, double rad, double mass, const Vector3D col){
811 int nx=int(floor(fabs(xll.X()-xru.X())/h));
812 int ny=int(floor(fabs(xll.Y()-xru.Y())/h));
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813 int nz=int(floor(fabs(xll.Z()-xru.Z())/h));
814 double dx= fabs(xll.X()-xru.X())/double(nx);
815 double dy= fabs(xll.Y()-xru.Y())/double(ny);
816 double dz= fabs(xll.Z()-xru.Z())/double(nz);
817 if(nx==0) dx = fabs(xll.X()-xru.X());
818 if(ny==0) dy = fabs(xll.Y()-xru.Y());
819 if(nz==0) dy = fabs(xll.Z()-xru.Z());
820 double dens = mass/(dx*dy*dz);
821 for(int i=0; i<=nx; ++i)
822 for(int j=0; j<=ny; ++j)
823 for(int k=0; k<=nz; ++k)
824 AddSPH3D(mbs,Vector(xll.X()+i*dx,xll.Y()+j*dy,xll.Z()+k*dz,0.0,0.0,0.0,

dens),rad,mass,col);
825 mbs->UO()<< (nx+1)*(ny+1)*(nz+1) << " SPH particles created \n";
826 }
827

828 //fill a box with SPH paricles 3D on a regular grid, base face lies parallel
to the xy plane; initial velocity is 0; particle mass is set to dens*(
volume per particle)

829 //currently: LIGGGHTS-sided only one constant mass is used for all particles -
it is calculated as an average over all HotInt-sided defined particle
masses

830 //xll...pos left lower vertex of (rectangular) base
831 //xru... right upper vertex of (rectangular) top face
832 //h...approximate particle distance / lattice constant (exact if edge lengths

are multiples of h)
833 //dens...density, rad...radius, mass...mass, col...color of all particles
834 void FSI_Communication_Element::FillBoxAutoMass(Vector3D xll, Vector3D xru,

double h, MBS* mbs, double dens, double rad, const Vector3D col){
835 int nx=int(floor(fabs(xll.X()-xru.X())/h));
836 int ny=int(floor(fabs(xll.Y()-xru.Y())/h));
837 int nz=int(floor(fabs(xll.Z()-xru.Z())/h));
838 double dx= fabs(xll.X()-xru.X())/double(nx);
839 double dy= fabs(xll.Y()-xru.Y())/double(ny);
840 double dz= fabs(xll.Z()-xru.Z())/double(nz);
841 double mass = dens*dx*dy*dz;
842 for(int i=0; i<=nx; ++i)
843 for(int j=0; j<=ny; ++j)
844 for(int k=0; k<=nz; ++k)
845 AddSPH3D(mbs,Vector(xll.X()+i*dx,xll.Y()+j*dy,xll.Z()+k*dz,0.0,0.0,0.0,

dens),rad,mass,col);
846 mbs->UO()<< (nx+1)*(ny+1)*(nz+1) << " SPH particles created \n";
847 }
848
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849 //create a 2D boundary shape by adjacent line segments between points (p1,p2),
(p2,p3), ... (pn-1,pn)

850 //where {p1,....pn} is given by "points"
851 //number is the element number, to which the GeomElements are connected, width

is line width, col...color
852 void FSI_Communication_Element::CreateBoundary2D(MBS* mbs, int number,TArray<

Vector2D> points, double wi, Vector3D col){
853 GeomLine2D line2;
854 for(int i=1; i<points.Length(); ++i){
855 line2=GeomLine2D(mbs,number,points(i),points(i+1),col);
856 line2.SetDrawParam(Vector3D(wi, 10., 0.));
857 AddGeomLine2D(line2);
858 }
859

860 }
861

862 //import and add a stl-geometry defined in stl_file_name to an element elemnr
as GeomTrig3Ds and use AlternativeShape for this element

863 //GeomTrig3Ds are registered as surface elements for FSI in
fsi_communication_element, unless the flag AddToCommunicationElement is
set to 0 (default is 1)

864 void FSI_Communication_Element::AddSTLMeshTrigsToElement(MBS* mbs, int elemnr,
mystr stl_file_name, double stretch_factor, const Vector3D&
translation_vec, const Matrix3D& rotation_mat, const Vector3D& color,
double transparency, int AddToCommunicationElement)

865 {
866 GeomMesh3D mesh;
867 mesh.ReadSTLMesh(stl_file_name.c_str());
868 mesh.Stretch(stretch_factor);
869 mesh.Translate(translation_vec);
870 mesh.Rotation(rotation_mat);
871

872 int counter = 0;
873 for(int i=1; i <= mesh.NTrigs(); i++)
874 {
875 Vector3D p1, p2, p3, n;
876 mesh.GetTrig0(i, p1, p2, p3, n);
877

878 if ((p2-p1).Cross(p3-p2)*n < 0)
879 {
880 swap(p2,p3);
881 counter++;
882 }
883

884 // GeomTrig3D trig(mbs, 0, p1, p2, p3, color); //elemnr must be passed
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885 GeomTrig3D trig(mbs, elemnr, p1, p2, p3, color);
886 trig.SetTransparency(transparency);
887

888 if (elemnr)
889 {
890 Element * elem = &mbs->GetElement(elemnr);
891 elem->SetAltShape(1);
892 //elem->Add(trig);
893 }
894 //else
895 //{
896 // mbs->Add(trig);
897 //}
898 if(AddToCommunicationElement) AddGeomTrig3D(trig);
899 }
900 mbs->UO(UO_LVL_0) << "AddSTLMeshToElement for \’" << stl_file_name << "\’:

swapped " << counter << " of " << mesh.NTrigs() << " trigs.\n";
901 }
902

903 //add a random offset uniformly distributed over [-0.5*x,0.5*x] to all
particle coordinates

904 void FSI_Communication_Element::randomize_particle_positions(double x){
905 srand(time(NULL));
906 double rm = double(RAND_MAX);
907 if(dim == 2){
908 Vector2D pos;
909 for(int i=1; i<=sph.Length(); ++i){
910 pos = GetParticlePos2D(i);
911 pos += Vector2D(x*(rand()/rm-0.5),x*(rand()/rm-0.5));
912 SetParticlePos2D(i,pos);
913 }
914 }
915 else if(dim == 3){
916 Vector3D pos;
917 for(int i=1; i<=sph.Length(); ++i){
918 pos = GetParticlePos3D(i);
919 pos += Vector3D(x*(rand()/rm-0.5),x*(rand()/rm-0.5),x*(rand()/rm-0.5));
920 SetParticlePos3D(i,pos);
921 }
922 }
923 else{
924 mbs->UO(UO_LVL_warn) << "warning: FSI_Communication_Element is implemented

for 2D-case or 3D-case only!\n";
925 }
926 }
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927

928 //-------------------------------------------------------------------
929

930 void FSI_Communication_Element::CopyFrom(const Element& e)
931 {
932 Element::CopyFrom(e);
933 const FSI_Communication_Element& ce = (const FSI_Communication_Element&)e;
934

935 // copy members
936 step = ce.step;
937 counter = ce.counter;
938 dim = ce.dim;
939 nparticles = ce.nparticles;
940 nequi = ce.nequi;
941

942 sph = ce.sph;
943 dataobj = ce.dataobj;
944 isinitialized=ce.isinitialized;
945 loadlist=ce.loadlist;
946 boundary=ce.boundary;
947 boundary_flags=ce.boundary_flags;
948

949 inputscript = ce.inputscript;
950 edc = ce.edc;
951 nstat = ce.nstat;
952

953 deltax = ce.deltax;
954 }
955

956 Element* FSI_Communication_Element::GetCopy()
957 {
958 Element* ec = new FSI_Communication_Element(*this);
959 return ec;
960 }
961

962 void FSI_Communication_Element::Initialize()
963 {
964 if(!isinitialized){
965 step = 0;
966 InitializeDataCommunication();
967 }
968 }
969

970 void FSI_Communication_Element::StartTimeStep()
971 {
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972

973 double some_termination_criterion;
974 try
975 {
976 some_termination_criterion = OutgoingDataCommunication();
977 }
978 catch(mystr & message)
979 {
980 mbs->UO(UO_LVL_err) << message; // mbs->UO() creates output in output

window at runtime
981 }
982

983 //mbs->UO(UO_LVL_sim) << "starting step " << ++step << "\n";
984 IncomingDataCommunication(step);
985 counter = 0;
986 }
987

988 void FSI_Communication_Element::EndTimeStep()
989 {
990 //mbs->UO() << "time = " << mbs->GetTime() << ", stepszie = " << mbs->

GetStepSize() << ", end time = " << mbs->GetSolSet().endtime << "\n";
991 if(fabs(mbs->GetTime()-mbs->GetSolSet().endtime)<=1E-2*mbs->GetSolSet().

minstepsize)
992 Finalize();
993

994 }
995

996 double FSI_Communication_Element::PostNewtonStep(double t)
997 {
998 //mbs->Get_pCFB()->ResultsUpdated(1); // redraw only, no data saving
999

1000 /* double some_termination_criterion;
1001 try
1002 {
1003 some_termination_criterion = OutgoingDataCommunication();
1004 }
1005 catch(mystr & message)
1006 {
1007 mbs->UO(UO_LVL_err) << message; // mbs->UO() creates output in output window

at runtime
1008 return 0;
1009 }
1010 mbs->UO(UO_LVL_sim) << "iteration number " << ++counter << "; termination

criterion: " << some_termination_criterion << "\n";
1011 */
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1012 // due to some reasons there might be problems when only one iteration is
performed

1013 // even if some_termination_criterion is small enough, and therefore we
artificially

1014 // could perform the following test:
1015 //if(counter < 2)
1016 // return 1;
1017

1018 //return fabs(some_termination_criterion);
1019 return 0.;
1020

1021 }

A.8. exchange_class_linux.h

1 //parallelized with MPI (has to run somewhere inbetween MPI_Init(NULL,NULL) (e
.g.) and MPI_Finalize()

2 //only proc 0 does setup, communication and data exhchange
3

4 #include <vector>
5 #include "lammps.h"
6 //#include "mpi.h"
7 #include "interface_baseclass.h"
8

9 #ifndef EX_CLASS_LINUX
10 #define EX_CLASS_LINUX
11

12 namespace LAMMPS_NS{
13 class LAMMPS; //forward declaration
14 }
15

16 using std::vector;
17 using std::cout;
18 using std::endl;
19

20 //container for refinement data (subtriangles, defined in barycentric
coordinates w.r.t. original triangle) of an original triangle

21 class RefinedTriangle{
22 protected:
23 vector< vector< vector< double > > > b; //b[i][j][k] contains k-th

barycentric coordinate of j-th vertex of i-th subtriangle
24 public:
25 RefinedTriangle(){}
26 ~RefinedTriangle(){}
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27 void Add(double a1,double a2,double a3,double b1,double b2,double b3,double
c1,double c2,double c3, int i){

28 vector< double > temp0,temp1,temp2;
29 temp0.push_back(a1); temp0.push_back(a2); temp0.push_back(a3); //vector

containing barycentric coordinates of vertex 0
30 temp1.push_back(b1); temp1.push_back(b2); temp1.push_back(b3);
31 temp2.push_back(c1); temp2.push_back(c2); temp2.push_back(c3);
32 //std::cout << "created vertices of sub-triangle" << std::endl;
33

34 vector< vector< double > > vtemp; //vector containing coordinate tripels of
all vertices of new subtriangle

35 vtemp.push_back(temp0); vtemp.push_back(temp1); vtemp.push_back(temp2);
36

37 //std::cout << "created sub-triangle: " << std::endl;
38 //std::cout << "(" << vtemp[0][0] << "," << vtemp[0][1] << "," << vtemp

[0][2] << ")" << std::endl;
39 //std::cout << "(" << vtemp[1][0] << "," << vtemp[1][1] << "," << vtemp

[1][2] << ")" << std::endl;
40 //std::cout << "(" << vtemp[2][0] << "," << vtemp[2][1] << "," << vtemp

[2][2] << ")" << std::endl;
41

42 //vector< vector< vector< double > > > t;
43 ////cout << "declared local copy" << endl;
44 //t.push_back(vtemp);
45 //std::cout << "local copy successful" << std::endl;
46

47 b.push_back(vtemp); //add new subtriangle to b
48

49 //std::cout << b.size();
50 //b.push_back(vector< vector< double > >());
51 //std::cout << "added sub-triangle to list: " << std::endl;
52 //int size = b.size();
53 //std::cout << "(" << b[size-1][0][0] << "," << b[size-1][0][1] << "," << b

[size-1][0][2] << ")" << std::endl;
54 //std::cout << "(" << b[size-1][1][0] << "," << b[size-1][1][1] << "," << b

[size-1][1][2] << ")" << std::endl;
55 //std::cout << "(" << b[size-1][2][0] << "," << b[size-1][2][1] << "," << b

[size-1][2][2] << ")" << std::endl;
56

57 }
58 double Get(int i,int j,int k){ return b[i][j][k]; } //return k-th

barycentric coordinate of j-th vertex of i-th subtriangle
59 int Length(){return b.size();}
60 };
61
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62 class DataL: public interface_baseclass {
63

64 public:
65 int proc; //number of current process
66 int nprocs; //total number of processes
67

68 DataL(const std::string* _ip = NULL, const short* _port = NULL, int narg=0,
char **arg=NULL); //counterpiece to DataH constructor (see DataH)

69 /*DataL(const DataL&); //copy constructor
70 DataL& operator=(const DataL&); //copy assignment*/
71 ~DataL();
72

73 int readone(); // reads in one LIGGHTS input script line; returns 1 for
successful read, 0 if termination string "qqqq" was received

74 int recv_command(); //receives one command and executes corresponding
routines; returns 1 for known command, 0 for unknown command

75

76 void sendforce();
77 void sendrSPH();
78 void sendvSPH();
79 void getrSPH();
80 void getvSPH();
81 void getrv();
82 void getrvfull();
83 void set_timestep(); //used to receive and set LIGGGHTS timestep -- has to

be done before first "run" command
84 void sendrohSPH();
85 void getrohSPH();
86 void get_ref_opt(); //receive refinement_option; cf. interface_baseclass::

refinement_option
87 void get_ref_res(); //receive refinement resolution - cf.

interface_baseclass::dr
88

89 //functions for 3D mesh refinement
90 //counting/indices start from 0 in any case
91

92 //add one subtriangle ABC with barycentric coordinates a1,a2,a3,b1,b2,b3,c1,
c2,c3 to list of subtriangles ref_triangle[i] for original triangle i

93 void AddSubTriangle(int i, double a1, double a2,double a3,double b1,double
b2,double b3,double c1,double c2,double c3) {ref_triangle[i].Add(a1,a2,a3
,b1,b2,b3,c1,c2,c3,i);}

94 //get m-th barycentric coordinate (m=0...2) of k-th vertex (k=0..2) of j-th
subtriangle of i-th original triangle

95 double GetBC(int i,int j,int k,int m) {return ref_triangle[i].Get(j,k,m);}
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96 //get m-th cartesian coordinate (m=0...2) of k-th vertex (k=0..2) of j-th
subtriangle of i-th original triangle

97 double GetCC(int i,int j,int k,int m) {return GetBC(i,j,k,0)*r(el(i,0),m)+
GetBC(i,j,k,1)*r(el(i,1),m)+GetBC(i,j,k,2)*r(el(i,2),m);}

98 //get number of sub-triangles corresponding to original triangle i
99 int nsub(int i){return ref_triangle[i].Length();}

100

101 //mesh refinement in case of refinement_option == 2 || 3 and dim == 3
102 void refine_mesh();
103 void recursive_refine(int i, const double* r1, const double* r2, const

double* r3, double a1,double a2,double a3,double b1,double b2,double b3,
double c1,double c2,double c3);

104

105 protected:
106 int c; //c...client-socket
107 LAMMPS_NS::LAMMPS* lp; //pointer to LAMMPS object, which is initialized and

set up in the constructor
108 vector<RefinedTriangle> ref_triangle; //contains precalculated mesh

refinement -- see notes; ref_triangle[i] contains refinement of surface
triangle el(i) in terms of barycentric coordinates

109 //w.r.t. the original vertices;
110

111 };
112

113 #endif

A.9. exchange_class_linux.cpp

1 #include <string>
2

3 // LAMMPS include files
4 #include "lammps.h"
5 #include "input.h"
6 #include "atom.h"
7 #include "update.h"
8 #include "force.h"
9 #include "modify.h"

10 #include "integrate.h"
11 #include "pair.h"
12 #include "fix.h"
13 //
14

15 #include <stdlib.h>
16 #include <unistd.h>
17 #include <errno.h>
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18 #include <string.h>
19 #include <netdb.h>
20 #include <sys/types.h>
21 #include <netinet/in.h>
22 #include <sys/socket.h>
23 #include <arpa/inet.h> // for htons etc
24 #include <iostream>
25 #include <iomanip>
26 #include <cstring>
27 #include <math.h>
28 #include <iostream>
29

30 #include "dn.h"
31 #include "exchange_class_linux.h"
32 #include "interface_baseclass.h"
33

34 #include "mpi.h"
35

36 #include <vector>
37

38 using namespace LAMMPS_NS;
39 using namespace std;
40

41 DataL::DataL(const string* _ip, const short* _port, int narg, char **arg){
42

43 dt=0.0; //actual timestep has to be set using set_timestep(double)
44

45 //TCP-IP v4 server setup and initialization of IP, port, nSPH
46 //------------------------------------------------------------
47 MPI_Comm_rank(MPI_COMM_WORLD,&proc);
48 MPI_Comm_size(MPI_COMM_WORLD,&nprocs);
49

50 string a1,a2,a3,a4,temp1;
51 int stat=-1;
52 struct sockaddr_in addr;
53 short port;
54

55 if(proc == 0){
56

57 if(!_ip && !_port){
58

59 /*
60 cout << "Server-IP a1.a2.a3.a4 (IPv4): " << endl << "a1: " << endl;
61 cin >> a1;
62 cout << "a2: " << endl;
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63 cin >> a2;
64 cout << "a3: " << endl;
65 cin >> a3;
66 cout << "a4: " << endl;
67 cin >> a4;
68 cout << "Port: " << endl;
69 cin >> port;
70 */
71 a1="192"; a2="168"; a3="56"; a4="1"; port=12345;
72

73 temp1.append(a1).append(".").append(a2).append(".").append(a3).append("."
).append(a4);

74 }
75 else if(_ip && _port){
76 temp1=*_ip;
77 port=*_port;
78

79 }
80 //create socket
81 c=socket(AF_INET, SOCK_STREAM, 0);
82 //ERROR CHECKING
83 if(c==-1){
84 cout << "Error: socket, error number: " << strerror(errno) << endl;
85 MPI_Abort(MPI_COMM_WORLD,1);
86 }
87 else{
88 cout << "Socket erfolgreich erstellt" << endl;
89 }
90

91 //configure connection and connect socket
92

93 //memset(addr.sin_zero,’/0’,sizeof(addr.sin_zero)); //Nullsetzen des
Elements sin_zero nicht unbedingt notwendig

94 addr.sin_family=AF_INET; //use IPv4
95 addr.sin_port=htons(port);
96 addr.sin_addr.s_addr=inet_addr(temp1.c_str());
97 }
98

99 int waitingcounter = -1;
100 while(1){ //this waiting procedure has to be synchronized
101 if(proc == 0)
102 stat=connect(c,reinterpret_cast<struct sockaddr *>(&addr),sizeof(addr));
103 MPI_Bcast(&stat,1,MPI_INT,0,MPI_COMM_WORLD);
104 if(stat!=-1){
105 if(proc == 0)
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106 cout << endl << "Verbindung mit " << temp1.c_str() << ", Port " << port
<< " erfolgreich" << endl;

107 break;
108 }else{
109 //cout << "Error: connect" << endl;
110 //MPI_Abort(MPI_COMM_WORLD,1);
111 if(proc == 0){
112 switch(waitingcounter){
113 case -1: cout << "Waiting to connect to " << temp1.c_str() << ", port

" << port << endl; break;
114 case 0: cout << "\r." << " " << flush; break;
115 case 1: cout << "\r.." << " " << flush; break;
116 case 2: cout << "\r..." << " " << flush; waitingcounter = -1; break;
117 }
118 ++waitingcounter;
119 }
120 sleep(1); //wait for 1 second
121 }
122 }
123

124 //create LAMMPS/LIGGGHTS object on each proc
125 //----------------------------------------------------------------
126 lp = new LAMMPS(narg,arg,MPI_COMM_WORLD,this);
127

128 //data transfer and initialization of LIGGGHTS and rSPH
129 //----------------------------------------------------------------
130 while(readone()); // read input script lines (part 1, variable definitions)
131

132 if(proc == 0){
133 recv(c,reinterpret_cast<char *>(&nSPH),4,0);
134 nSPH=ntohl(nSPH);
135 }
136 MPI_Bcast(&nSPH,1,MPI_UNSIGNED,0,MPI_COMM_WORLD);
137

138 while(readone()); // read input script lines (part 2)
139

140 //memory allocation and initialization of el and nel, r,v,f
141 //----------------------------------------------------------------
142 if(proc == 0){
143 recv(c,reinterpret_cast<char *>(&n),4,0);
144 n=ntohl(n);
145 recv(c,reinterpret_cast<char *>(&nstat),4,0);
146 nstat=ntohl(nstat);
147 recv(c,reinterpret_cast<char *>(&dim),2,0);
148 dim=ntohs(dim);
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149 }
150 MPI_Bcast(&n,1,MPI_UNSIGNED,0,MPI_COMM_WORLD);
151 MPI_Bcast(&nstat,1,MPI_UNSIGNED,0,MPI_COMM_WORLD);
152 MPI_Bcast(&dim,1,MPI_UNSIGNED_SHORT,0,MPI_COMM_WORLD);
153

154 _r = new double[3*n];
155 _v = new double[3*n];
156 _f = new double[3*n];
157

158 zerof();
159 zeror();
160 zerov();
161

162 getrvfull(); //initialize r and v
163

164 //create and initialize nel and el -- only has to be done once
165 if(proc == 0){
166 recv(c,reinterpret_cast<char *>(&nel),4,0);
167 nel=ntohl(nel);
168 }
169 MPI_Bcast(&nel,1,MPI_UNSIGNED,0,MPI_COMM_WORLD);
170

171 _el = new unsigned int[dim*nel];
172

173 if(proc==0){
174 for(int i=0; i<nel; ++i){
175 for(int j=0; j<dim; ++j){
176 recv(c,reinterpret_cast<char *>(elp(i,j)),4,0);
177 setel(i,j,ntohl(el(i,j)));
178 }
179 }
180 }
181

182 MPI_Bcast(_el,dim*nel,MPI_UNSIGNED,0,MPI_COMM_WORLD);
183

184 //get refinement option and calculate pre-refined mesh (for 3D); initialize
vector<RefinedTriangle> ref_triangle

185

186 ref_triangle.resize(nel,RefinedTriangle());
187

188 get_ref_opt();
189 //std::cout << "proc " << proc << ": " << "refinement option: " <<

get_refinement_option() << std::endl;
190 if(proc==0) std::cout << "refinement option: " << get_refinement_option() <<

std::endl;
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191

192 get_ref_res();
193 //std::cout << "proc " << proc << ": " << "refinement resolution: " <<

get_dr() << std::endl;
194 if(proc==0) std::cout << "refinement resolution: " << get_dr() << std::endl;
195

196 if(dim==3){
197 if(get_refinement_option()==2 || get_refinement_option()==3){ //in this

case, calculate pre-refined mesh
198 refine_mesh(); //done on all procs
199 }
200 }
201

202 _rSPH = new double[3*nSPH];
203 _vSPH = new double[3*nSPH];
204 getrSPH();
205 getvSPH();
206

207 _rohSPH = new double[nSPH];
208 zerorohSPH();
209

210 }
211

212 void DataL::set_timestep(){
213

214 if(proc==0){
215 char temp[10];
216 int remain=10;
217 while(remain!=0) remain-=recv(c,temp+(10-remain),remain,0);
218 ntohd(temp, &dt, 1);
219 }
220 MPI_Bcast(&dt,1,MPI_DOUBLE,0,MPI_COMM_WORLD);
221

222 //the following is done in analogy to what is done in the LIGGGHTS fix
fix_dt_reset.cpp (in function end_of_step())

223

224 // reset update->dt and other classes that depend on it
225 // rRESPA, pair style, fixes
226 lp->update->dt = dt;
227 if (strcmp(lp->update->integrate_style,"respa") == 0) lp->update->integrate

->reset_dt();
228 if (lp->force->pair) lp->force->pair->reset_dt();
229 for (int i = 0; i < lp->modify->nfix; i++) lp->modify->fix[i]->reset_dt();
230 }
231

208



A.9. EXCHANGE_CLASS_LINUX.CPP

232 void DataL::sendforce(){
233 double* ftemp;
234 if(proc == 0){
235 ftemp = new double[3*(n-nstat)];
236 for(int i=0; i<3*(n-nstat); ++i) ftemp[i]=0.0;
237 }
238 MPI_Reduce(_f,ftemp,3*(n-nstat),MPI_DOUBLE,MPI_SUM,0,MPI_COMM_WORLD);
239 //now ftemp is filled and updated
240

241 if(proc == 0){
242 char* mem = new char[30*(n-nstat)]; //memory which ntohd and htodn is

working on; size = 10*(number of doubles in array)
243

244 //with consistency check
245 int remain=30*(n-nstat);
246 htond(mem,ftemp,3*(n-nstat));
247 while(remain!=0) remain-=send(c,mem+(30*(n-nstat)-remain),remain,0);
248

249 delete [] mem;
250 delete [] ftemp;
251 }
252 }
253

254 void DataL::sendrSPH(){
255 //get coordinates from LIGGGHTS
256 zerorSPH();
257 double **x = lp->atom->x;
258 int *tag = lp->atom->tag;
259 int nlocal = lp->atom->nlocal;
260 int id,offset;
261 for (int i = 0; i < nlocal; i++) {
262 id = tag[i]; //global number of local particle i, range 1...nSPH --> id-1

actual global number
263 for(int j=0; j<3; ++j) setrSPH((id-1),j,x[i][j]);
264 }
265

266 double* rtemp;
267 if(proc == 0){
268 rtemp = new double[3*nSPH];
269 for(int i=0; i<3*nSPH; ++i) rtemp[i] = 0.0;
270 }
271

272 MPI_Reduce(_rSPH,rtemp,3*nSPH,MPI_DOUBLE,MPI_SUM,0,MPI_COMM_WORLD);
273 //now rtemp is filled and updated on proc0
274
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275 if(proc == 0){
276 char* mem = new char[30*nSPH]; //memory which ntohd and htodn is working on

; size = 10*(number of doubles in array)
277 //with consistency check
278 int remain=30*nSPH;
279 htond(mem,rtemp,3*nSPH);
280 while(remain!=0) remain-=send(c,mem+(30*nSPH-remain),remain,0);
281

282 delete [] mem;
283 delete [] rtemp;
284 }
285 }
286

287 void DataL::sendvSPH(){
288 //get coordinates from LIGGGHTS
289 zerovSPH();
290 double **v = lp->atom->v;
291 int *tag = lp->atom->tag;
292 int nlocal = lp->atom->nlocal;
293 int id,offset;
294 for (int i = 0; i < nlocal; i++) {
295 id = tag[i]; //global number of local particle i, range 1...nSPH --> id-1

actual global number
296 for(int j=0; j<3; ++j) setvSPH((id-1),j,v[i][j]);
297 }
298

299 double* vtemp;
300 if(proc == 0){
301 vtemp = new double[3*nSPH];
302 for(int i=0; i<3*nSPH; ++i) vtemp[i] = 0.0;
303 }
304

305 MPI_Reduce(_vSPH,vtemp,3*nSPH,MPI_DOUBLE,MPI_SUM,0,MPI_COMM_WORLD);
306 //now rtemp is filled and updated on proc0
307

308 if(proc == 0){
309 char* mem = new char[30*nSPH]; //memory which ntohd and htodn is working on

; size = 10*(number of doubles in array)
310 //with consistency check
311 int remain=30*nSPH;
312 htond(mem,vtemp,3*nSPH);
313 while(remain!=0) remain-=send(c,mem+(30*nSPH-remain),remain,0);
314

315 delete [] mem;
316 delete [] vtemp;
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317 }
318 }
319

320 void DataL::sendrohSPH(){
321 //get densities from LIGGGHTS
322 zerorohSPH();
323 double *density = lp->atom->density;
324 int *tag = lp->atom->tag;
325 int nlocal = lp->atom->nlocal;
326 int id,offset;
327 for (int i = 0; i < nlocal; i++) {
328 id = tag[i]; //global number of local particle i, range 1...nSPH --> id-1

actual global number
329 setrohSPH((id-1),density[i]);
330 }
331

332 double* rohtemp;
333 if(proc == 0){
334 rohtemp = new double[nSPH];
335 for(int i=0; i<nSPH; ++i) rohtemp[i] = 0.0;
336 }
337

338 MPI_Reduce(_rohSPH,rohtemp,nSPH,MPI_DOUBLE,MPI_SUM,0,MPI_COMM_WORLD);
339 //now rohtemp is filled and updated on proc0
340

341 if(proc == 0){
342 char* mem = new char[10*nSPH]; //memory which ntohd and htodn is working on

; size = 10*(number of doubles in array)
343 //with consistency check
344 int remain=10*nSPH;
345 htond(mem,rohtemp,nSPH);
346 while(remain!=0) remain-=send(c,mem+(10*nSPH-remain),remain,0);
347

348 delete [] mem;
349 delete [] rohtemp;
350 }
351 }
352

353 void DataL::getrSPH(){
354

355 if(proc == 0){
356 char* mem = new char[30*nSPH]; //memory which ntohd and htodn is working on

; size = 10*(number of doubles in array)
357

358 //with consistency check
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359 int remain=30*nSPH;
360 while(remain!=0) remain-=recv(c,mem+(30*nSPH-remain),remain,0);
361 ntohd(mem,_rSPH,3*nSPH);
362

363 delete [] mem;
364 }
365 MPI_Bcast(_rSPH,3*nSPH,MPI_DOUBLE,0,MPI_COMM_WORLD);
366

367 //rSPH initialization in LIGGGHTS atom array
368 double** x = lp->atom->x;
369 int m;
370 for(int i=0; i<nSPH; ++i){
371 if((m = lp->atom->map(i+1))>=0){ //map(i) returns local number of particle

with global number i (or <0 if i not one of local particles)
372 for(int j=0; j<3; ++j){
373 x[m][j]=rSPH(i,j);
374 }
375 // cout << "Teilchen " << i << " initialisiert mit rSPH = " << rSPH(i

,0) << " " << rSPH(i,1) << " " << rSPH(i,2) << endl;
376 }
377 }
378

379 }
380

381 void DataL::getvSPH(){
382

383 if(proc == 0){
384 char* mem = new char[30*nSPH]; //memory which ntohd and htodn is working on

; size = 10*(number of doubles in array)
385

386 //with consistency check
387 int remain=30*nSPH;
388 while(remain!=0) remain-=recv(c,mem+(30*nSPH-remain),remain,0);
389 ntohd(mem,_vSPH,3*nSPH);
390

391 delete [] mem;
392 }
393 MPI_Bcast(_vSPH,3*nSPH,MPI_DOUBLE,0,MPI_COMM_WORLD);
394

395 //vSPH initialization in LIGGGHTS atom array
396 double** v = lp->atom->v;
397 int m;
398 for(int i=0; i<nSPH; ++i){
399 if((m = lp->atom->map(i+1))>=0){ //map(i) returns local number of particle

with global number i (or <0 if i not one of local particles)
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400 for(int j=0; j<3; ++j){
401 v[m][j]=vSPH(i,j);
402 }
403 // cout << "Teilchen " << i << " initialisiert mit vSPH = " << vSPH(i

,0) << " " << vSPH(i,1) << " " << vSPH(i,2) << endl;
404 }
405 }
406

407 }
408

409 void DataL::getrohSPH(){
410

411 if(proc == 0){
412 char* mem = new char[10*nSPH]; //memory which ntohd and htodn is working on

; size = 10*(number of doubles in array)
413

414 //with consistency check
415 int remain=10*nSPH;
416 while(remain!=0) remain-=recv(c,mem+(10*nSPH-remain),remain,0);
417 ntohd(mem,_rohSPH,nSPH);
418

419 delete [] mem;
420 }
421 MPI_Bcast(_rohSPH,nSPH,MPI_DOUBLE,0,MPI_COMM_WORLD);
422

423 //rohSPH initialization in LIGGGHTS atom array
424 double* roh = lp->atom->density;
425 int m;
426 for(int i=0; i<nSPH; ++i){
427 if((m = lp->atom->map(i+1))>=0){ //map(i) returns local number of particle

with global number i (or <0 if i not one of local particles)
428 roh[m]=rohSPH(i);
429 }
430 }
431

432 }
433

434 void DataL::getrv(){
435 if(proc == 0){
436 char* mem = new char[30*(n-nstat)]; //memory which ntohd and htodn is

working on; size = 10*(number of doubles in array)
437

438 //with consistency check
439 int remain=30*(n-nstat);
440 while(remain!=0) remain-=recv(c,mem+(30*(n-nstat)-remain),remain,0);
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441 ntohd(mem,_r,3*(n-nstat));
442

443 remain=30*(n-nstat);
444 while(remain!=0) remain-=recv(c,mem+(30*(n-nstat)-remain),remain,0);
445 ntohd(mem,_v,3*(n-nstat));
446

447 delete [] mem;
448 }
449 MPI_Bcast(_r,3*(n-nstat),MPI_DOUBLE,0,MPI_COMM_WORLD);
450 MPI_Bcast(_v,3*(n-nstat),MPI_DOUBLE,0,MPI_COMM_WORLD);
451 }
452

453 void DataL::getrvfull(){
454 if(proc == 0){
455 char* mem = new char[30*n]; //memory which ntohd and htodn is working on;

size = 10*(number of doubles in array)
456

457 //with consistency check
458 int remain=30*n;
459 while(remain!=0) remain-=recv(c,mem+(30*n-remain),remain,0);
460 ntohd(mem,_r,3*n);
461

462 remain=30*n;
463 while(remain!=0) remain-=recv(c,mem+(30*n-remain),remain,0);
464 ntohd(mem,_v,3*n);
465

466 delete [] mem;
467 }
468 MPI_Bcast(_r,3*n,MPI_DOUBLE,0,MPI_COMM_WORLD);
469 MPI_Bcast(_v,3*n,MPI_DOUBLE,0,MPI_COMM_WORLD);
470 }
471

472 DataL::~DataL(){
473 if(proc == 0){
474 //close TCP sockets / cleanup
475 close(c);
476 }
477

478 //memory management
479 delete [] _r;
480 delete [] _v;
481 delete [] _f;
482 delete [] _el;
483 delete [] _rSPH;
484 delete [] _vSPH;
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485 delete [] _rohSPH;
486

487 delete lp;
488 }
489

490 int DataL::readone(){
491 unsigned int length,remain;
492 if(proc == 0){
493 recv(c,reinterpret_cast<char *>(&length),4,0);
494 length=ntohl(length);
495 }
496 MPI_Bcast(&length,1,MPI_UNSIGNED,0,MPI_COMM_WORLD);
497 remain=length;
498 char* temp = new char[length];
499 if(proc == 0){
500 while(remain!=0) remain-=recv(c,temp+(length-remain),remain,0);
501 }
502 MPI_Bcast(temp,length,MPI_CHAR,0,MPI_COMM_WORLD);
503 if(temp[0]==’q’ && temp[1]==’q’ && temp[2]==’q’ && temp[3]==’q’){
504 delete [] temp;
505 return 0;
506 }
507 else{
508 lp->input->one(temp);
509 //std::cout << temp << std::endl;
510 delete [] temp;
511 return 1;
512 }
513 }
514

515 void DataL::get_ref_opt(){
516 if(proc == 0){
517 recv(c,reinterpret_cast<char *>(&refinement_option),4,0);
518 refinement_option=ntohl(refinement_option);
519 }
520 MPI_Bcast(&refinement_option,1,MPI_UNSIGNED,0,MPI_COMM_WORLD);
521 }
522

523 void DataL::get_ref_res(){
524 if(proc==0){
525 char temp[10];
526 int remain=10;
527 while(remain!=0) remain-=recv(c,temp+(10-remain),remain,0);
528 ntohd(temp, &dr, 1);
529 }
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530 MPI_Bcast(&dr,1,MPI_DOUBLE,0,MPI_COMM_WORLD);
531 }
532

533 int DataL::recv_command(){
534 unsigned int length,remain;
535 if(proc == 0){
536 recv(c,reinterpret_cast<char *>(&length),4,0);
537 length=ntohl(length);
538 }
539 MPI_Bcast(&length,1,MPI_UNSIGNED,0,MPI_COMM_WORLD);
540 remain=length;
541 char* temp = new char[length];
542 if(proc == 0){
543 while(remain!=0) remain-=recv(c,temp+(length-remain),remain,0);
544 }
545 MPI_Bcast(temp,length,MPI_CHAR,0,MPI_COMM_WORLD);
546

547 if(strncmp(temp,"send SPH",length)==0){
548 this->sendrSPH();
549 this->sendvSPH();
550 this->sendrohSPH();
551

552 delete [] temp;
553 return 1;
554 }
555

556 if(strncmp(temp,"send f",length)==0){
557 this->sendforce();
558

559 delete [] temp;
560 return 1;
561 }
562

563 if(strncmp(temp,"dummy",length)==0){
564 delete [] temp;
565 return 1;
566 }
567

568 if(strncmp(temp,"recv rv",length)==0){
569 this->getrv();
570

571 delete [] temp;
572 return 1;
573 }
574
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575 delete [] temp;
576 return 0;
577 }
578

579 //refines original triangle i recusively until edges are shorter than dr
580 //saves data in terms of barycentric coordinates in ref_triangle
581 //a1...c3 vertices of current sub-triangle in barycentric coordinates
582 //r1,r2,r3 ... vertices of original triangle in cartesian coordinates
583 void DataL::recursive_refine(int i, const double* r1, const double* r2, const

double* r3, double a1,double a2,double a3,double b1,double b2,double b3,
double c1,double c2,double c3){

584

585 //vertices of current sub-triangle in cartesian coordinates
586 double x11 = a1*r1[0]+a2*r2[0]+a3*r3[0];
587 double x12 = a1*r1[1]+a2*r2[1]+a3*r3[1];
588 double x13 = a1*r1[2]+a2*r2[2]+a3*r3[2];
589

590 double x21 = b1*r1[0]+b2*r2[0]+b3*r3[0];
591 double x22 = b1*r1[1]+b2*r2[1]+b3*r3[1];
592 double x23 = b1*r1[2]+b2*r2[2]+b3*r3[2];
593

594 double x31 = c1*r1[0]+c2*r2[0]+c3*r3[0];
595 double x32 = c1*r1[1]+c2*r2[1]+c3*r3[1];
596 double x33 = c1*r1[2]+c2*r2[2]+c3*r3[2];
597

598 double e1 = (x21-x11)*(x21-x11) + (x22-x12)*(x22-x12) + (x23-x13)*(x23-x13);
599 double e2 = (x31-x21)*(x31-x21) + (x32-x22)*(x32-x22) + (x33-x23)*(x33-x23);
600 double e3 = (x31-x11)*(x31-x11) + (x32-x12)*(x32-x12) + (x33-x13)*(x33-x13);
601

602 double rc2 = dr*dr;
603

604 if(e1 > rc2 || e2 > rc2 || e3 > rc2) //make a recursive sub-division if one
side of current triangle is longer than dr=sqrt(rc2)

605 {
606 recursive_refine(i,r1,r2,r3,a1,a2,a3,0.5*(a1+b1),0.5*(a2+b2),0.5*(a3+b3)

,0.5*(a1+c1),0.5*(a2+c2),0.5*(a3+c3));
607 recursive_refine(i,r1,r2,r3,0.5*(a1+b1),0.5*(a2+b2),0.5*(a3+b3),b1,b2,b3

,0.5*(b1+c1),0.5*(b2+c2),0.5*(b3+c3));
608 recursive_refine(i,r1,r2,r3,0.5*(a1+c1),0.5*(a2+c2),0.5*(a3+c3),0.5*(b1+c1)

,0.5*(b2+c2),0.5*(b3+c3),c1,c2,c3);
609 recursive_refine(i,r1,r2,r3,0.5*(a1+b1),0.5*(a2+b2),0.5*(a3+b3),0.5*(a1+c1)

,0.5*(a2+c2),0.5*(a3+c3),0.5*(b1+c1),0.5*(b2+c2),0.5*(b3+c3));
610 }
611 else
612 {
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613 AddSubTriangle(i,a1,a2,a3,b1,b2,b3,c1,c2,c3);
614 }
615 }
616

617 void DataL::refine_mesh(){
618 const double* r1;
619 const double* r2;
620 const double* r3;
621 for(int i=0; i<nel; ++i){
622 r1 = rp(el(i,0));
623 r2 = rp(el(i,1));
624 r3 = rp(el(i,2));
625 //if(proc == 0){
626 // std::cout << "proc " << proc << ": " << "refining element " << i << std

::endl;
627 // //std::cout << r1 << " " << r2 << " " << r3 << std::endl;
628 //}
629 recursive_refine(i,r1,r2,r3,1.,0.,0.,0.,1.,0.,0.,0.,1.);
630 }
631

632 if(proc==0){
633 int count = 0;
634 for(int i=0; i<nel; ++i)
635 count += nsub(i);
636 std::cout << "Total number of 3D surface elements (after pre-refinement): "

<< count << std::endl;
637 }
638 }

A.10. fix_FSI_SPH_v2_1.h

1 /* ----------------------------------------------------------------------
2 LIGGGHTS - LAMMPS Improved for General Granular and Granular Heat
3 Transfer Simulations
4

5 www.liggghts.com | www.cfdem.com
6 Christoph Kloss, christoph.kloss@cfdem.com
7

8 LIGGGHTS is based on LAMMPS
9 LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator

10 http://lammps.sandia.gov, Sandia National Laboratories
11 Steve Plimpton, sjplimp@sandia.gov
12

13 Copyright (2003) Sandia Corporation. Under the terms of Contract
14 DE-AC04-94AL85000 with Sandia Corporation, the U.S. Government retains
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15 certain rights in this software. This software is distributed under
16 the GNU General Public License.
17

18 See the README file in the top-level LAMMPS directory.
19 ------------------------------------------------------------------------- */
20

21 /* ----------------------------------------------------------------------
22 Contributing author for SPH:
23 Andreas Aigner (CD Lab Particulate Flow Modelling, JKU)
24 andreas.aigner@jku.at
25 ------------------------------------------------------------------------- */
26

27 /* ----------------------------------------------------------------------
28 FSI and coupling to external program by Markus Schörgenhumer, mkschoe@gmail.

com
29 ------------------------------------------------------------------------- */
30

31 #ifndef CLASS_CELL
32 #define CLASS_CELL
33

34 struct intdyn{ //dynamic integer array
35 int x;
36 intdyn* next;
37 };
38

39 class cell_list{
40 public:
41 int nx; //number of cells in each direction
42 int ny;
43 int nz;
44 double lx; // cell dimensions
45 double ly;
46 double lz;
47 double xmin;
48 double xmax;
49 double ymin;
50 double ymax;
51 double zmin;
52 double zmax;
53 double rc;
54 intdyn**** cl; //cell list
55 cell_list(double xlo, double xhi, double ylo, double yhi, double zlo, double

zhi, double rc); // rc ... maximum range of wall interaction
56 ~cell_list();
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57 void hash(double* r, int i); //hash particle with (local) number i and
coordinates r

58 void dyn_delete(); //clear complete cell list
59 };
60

61 //save cell indices in x,y,z direction of a particle with coordinates r in i,j
,k; cell grid defined by cl;

62 void getindex(int& i, int& j, int& k, double* r, cell_list& cl);
63

64 #endif
65

66 #ifdef FIX_CLASS
67

68 FixStyle(wall/sph_fsi,FixWallSPH_FSI)
69

70 #else
71

72 #ifndef LMP_FIX_WALL_SPH_FSI_H
73 #define LMP_FIX_WALL_SPH_FSI_H
74

75 #include "fix_sph.h"
76

77 namespace LAMMPS_NS {
78

79 class FixWallSPH_FSI : public FixSPH {
80 public:
81 double rc; //cut-off
82 double r0; //equilibrium distance
83 double k; //maximum repulsive force for particle-wall distance r=0
84 double t; //maximum viscuous force between fluid and wall for particle-wall

distance r=0 and deltaV = 1 m/s
85 //defines viscosity for fluid-wall interaction --> see notes
86 FixWallSPH_FSI(class LAMMPS *, int, char **);
87 ~FixWallSPH_FSI();
88 int setmask();
89 void init();
90 void setup(int vflag);
91 void post_force(int vflag);
92 void post_force_respa(int vflag, int ilevel, int iloop);
93 };
94

95 }
96

97 #endif
98 #endif
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99

100 #ifndef FSI3D
101 #define FSI3D
102 //-----------------------------------------------------------------------//
103 //FSI wall interaction routines 3D
104 //-----------------------------------------------------------------------//
105

106 //calculates interaction of one surface triangle with the local SPH particles
and writes results to LIGGGHTS and DataL force arrays

107 //7-point Gauss surface integration
108 //using recursive mesh-refinement
109

110 //ngauss... number of Gauss points
111 //rbcgauss... barycentric coordinates of Gauss points (rbcgauss[0] is the

coordinate tripel corresponding to the first Gauss point)
112 //wgauss... corresponding weights
113 //r,v,f ... local LIGGGHTS SPH arrays
114 //cl... cell_list for cell search (pair interactions)
115 //rc2... square of force cut-off radius rc
116 //h... smoothing lenght correspondence (h = rc/2)
117 //alpha, beta... parameters for repulsive force
118 //t... parameter for viscuous force (wall friction)
119 //r1,r2,r3 ... vertices of basis triangle (from DataL object)
120 //v1,.. corresponding velocities (from DataL object)
121 //f1,.. corresponding forces (from DataL object)
122 //x11...x33 ... coordinates of vertices of current sub-triangle in recursion
123

124 void rec_triangle_int(int ngauss, double rbcgauss[][3], double wgauss[],
double** x, double** v, double** f, cell_list& cl,

125 const double& rc2, const double& h, const double& alpha, const
double& beta, const double& t,

126 const double* r1, const double* r2, const double* r3, const double*
v1, const double* v2, const double* v3, double* f1, double* f2,
double* f3,

127 double x11, double x12, double x13, double x21, double x22, double
x23, double x31, double x32, double x33);

128

129 //same as rec_triangle_int, but without recursion
130 void triangle_int(int ngauss, double rbcgauss[][3], double wgauss[], double**

x, double** v, double** f, cell_list& cl,
131 const double& rc2, const double& h, const double& alpha, const double&

beta, const double& t,
132 const double* r1, const double* r2, const double* r3, const double* v1

, const double* v2, const double* v3, double* f1, double* f2,
double* f3,
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133 double x11, double x12, double x13, double x21, double x22, double x23
, double x31, double x32, double x33);

134

135 //calculates barycentric coordinates of point x=(p,q,r) in triangle with
vertices r1=(x1,y1,z1),r2=(x2,y2,z2),r3=(x3,y3,z3) and saves data in b1,b2
,b3

136 void calc_barycentric_coordinates(double& b1, double& b2, double& b3, double p
, double q, double r, double x1, double x2, double x3, double y1, double
y2, double y3, double z1, double z2, double z3);

137

138 /* //used for old version of calc_barycentric_coordinates
139 //calculate barycentric coordinates for points in xy/xz/yz-layer; cf. also

calc_barycentric_coordinates
140 void calc_barycentric_coordinates_yzlayer(double b1,double b2,double b3,double

q,double r,double y1,double y2,double y3,double z1,double z2,double z3);
141 void calc_barycentric_coordinates_xylayer(double b1,double b2,double b3,double

p,double q,double x1,double x2,double x3,double y1,double y2,double y3);
142 void calc_barycentric_coordinates_xzlayer(double b1,double b2,double b3,double

p,double r,double x1,double x2,double x3,double z1,double z2,double z3);
143 */
144

145 //area of a triangle with vertices r1,r2,r3
146 double triangle_area(const double* r1, const double* r2, const double* r3);
147

148 //area of a triangle with vertices r1=(x11,x12,x13),r2=(x21,x22,x23),r3=(x31,
x32,x33)

149 double triangle_area(double x11, double x12, double x13, double x21, double
x22, double x23, double x31, double x32, double x33);

150

151 //square of area of a triangle with vertices r1=(x11,x12,x13),r2=(x21,x22,x23)
,r3=(x31,x32,x33)

152 double triangle_area_sq(double x11, double x12, double x13, double x21, double
x22, double x23, double x31, double x32, double x33);

153

154 #endif

A.11. fix_FSI_SPH_v2_1.cpp

1 /* ----------------------------------------------------------------------
2 LIGGGHTS - LAMMPS Improved for General Granular and Granular Heat
3 Transfer Simulations
4

5 www.liggghts.com | www.cfdem.com
6 Christoph Kloss, christoph.kloss@cfdem.com
7
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8 LIGGGHTS is based on LAMMPS
9 LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator

10 http://lammps.sandia.gov, Sandia National Laboratories
11 Steve Plimpton, sjplimp@sandia.gov
12

13 Copyright (2003) Sandia Corporation. Under the terms of Contract
14 DE-AC04-94AL85000 with Sandia Corporation, the U.S. Government retains
15 certain rights in this software. This software is distributed under
16 the GNU General Public License.
17

18 See the README file in the top-level LAMMPS directory.
19 ------------------------------------------------------------------------- */
20

21 /* ----------------------------------------------------------------------
22 Contributing author for SPH:
23 Andreas Aigner (CD Lab Particulate Flow Modelling, JKU)
24 andreas.aigner@jku.at
25 ------------------------------------------------------------------------- */
26

27 /* ----------------------------------------------------------------------
28 FSI and coupling to external program by Markus Schörgenhumer, mkschoe@gmail.

com
29 ------------------------------------------------------------------------- */
30

31 #include "math.h"
32 #include "stdlib.h"
33 #include "string.h"
34 #include "atom.h"
35 #include "force.h"
36 #include "pair.h"
37 #include "modify.h"
38 #include "memory.h"
39 #include "domain.h"
40 #include "respa.h"
41 #include "update.h"
42 #include "error.h"
43 #include "sph_kernels.h"
44 #include "fix_FSI_SPH_v2_1.h"
45 #include <iostream>
46 #include "exchange_class_linux.h"
47

48 #include "mpi.h"
49

50 using namespace LAMMPS_NS;
51 using namespace std;
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52

53 cell_list::cell_list(double xlo, double xhi, double ylo, double yhi, double
zlo, double zhi, double rc):

54 xmin(xlo), xmax(xhi), ymin(ylo), ymax(yhi), zmin(zlo), zmax(zhi), rc(rc) {
55 nx = floor((xmax-xmin)/rc);
56 ny = floor((ymax-ymin)/rc);
57 nz = floor((zmax-zmin)/rc);
58 if(nx==0) ++nx;
59 if(ny==0) ++ny;
60 if(nz==0) ++nz;
61 lx = (xmax-xmin)/nx;
62 ly = (ymax-ymin)/ny;
63 lz = (zmax-zmin)/nz;
64 cl = new intdyn***[nx];
65 for(int i=0; i<nx; ++i){
66 cl[i] = new intdyn**[ny];
67 for(int j=0; j<ny; ++j){
68 cl[i][j] = new intdyn*[nz];
69 for(int k=0; k<nz; ++k){
70 cl[i][j][k] = NULL;
71 }
72 }
73 }
74 }
75

76 void cell_list::hash(double* r, int num){
77 int i,j,k;
78 getindex(i,j,k,r,*this);
79 if( i>=0 && i<nx && j>=0 && j<ny && k>=0 && k<nz ){
80

81 //std::cout << "hash: " << "num " << num << "(i,j,k): (" << i << ", " << j
<< ", " << k << ")" << std::endl;

82

83 intdyn* temp = cl[i][j][k];
84 if(temp){
85 while(temp->next) temp=temp->next; //find last element - temp == NULL
86 temp->next = new intdyn;
87 temp->next->x = num;
88 temp->next->next = NULL;
89 }
90 else{
91 cl[i][j][k] = new intdyn;
92 cl[i][j][k]->x = num;
93 cl[i][j][k]->next = NULL;
94 }
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95 }
96 else{
97 std::cout << "hash: particle outside domain" << " " << r[0] << " " << r[1]

<< " " << r[2] << std::endl;
98 MPI_Abort(MPI_COMM_WORLD,1);
99 }

100 }
101

102 void cell_list::dyn_delete(){
103 intdyn* temp;
104 intdyn* temp1;
105

106 for(int i=0; i<nx; ++i){
107 for(int j=0; j<ny; ++j){
108 for(int k=0; k<nz; ++k){
109 if(cl[i][j][k]){
110 temp = cl[i][j][k];
111 while(temp){
112 temp1 = temp->next;
113 delete temp;
114 temp = temp1;
115 }
116 cl[i][j][k]=NULL;
117 }
118 }
119 }
120 }
121

122 }
123

124 cell_list::~cell_list(){
125 intdyn* temp;
126 intdyn* temp1;
127

128 for(int i=0; i<nx; ++i){
129 for(int j=0; j<ny; ++j){
130 for(int k=0; k<nz; ++k){
131 temp = cl[i][j][k];
132 while(temp){
133 temp1 = temp->next;
134 delete temp;
135 temp = temp1;
136 }
137 }
138 delete [] cl[i][j];
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139 }
140 delete [] cl[i];
141 }
142 delete [] cl;
143 }
144

145 void getindex(int& i, int& j, int& k, double* r, cell_list& cl){
146 i = int( (r[0]-cl.xmin)/cl.lx );
147 j = int( (r[1]-cl.ymin)/cl.ly );
148 k = int( (r[2]-cl.zmin)/cl.lz );
149 double eps=(cl.xmax-cl.xmin)*1E-12;
150 if(abs(cl.xmax-r[0])<eps && i==cl.nx) --i; //in case a SPH particle lies "

exactly" on the domain border
151 if(abs(cl.ymax-r[1])<eps && j==cl.ny) --j; //don’t know how LAMMPS handles

this (for local atoms)
152 if(abs(cl.zmax-r[2])<eps && k==cl.nz) --k; //doesn’t matter for boundary (

Gauss) particles, since all of them
153 //are hashed on each proc and i,j,k = -1 or nx,ny,nz is allowed
154 if(abs(cl.xmin-r[0])<eps && i==-1) ++i;
155 if(abs(cl.ymin-r[1])<eps && j==-1) ++j;
156 if(abs(cl.zmin-r[2])<eps && k==-1) ++k;
157 }
158

159 /* ---------------------------------------------------------------------- */
160

161 FixWallSPH_FSI::FixWallSPH_FSI(LAMMPS *lmp, int narg, char **arg) :
162 FixSPH(lmp, narg, arg)
163 {
164 //first 3 arguments: fix id, group id, fix style
165 //parameters of force calculation as following (see post_force()): rc, r0, k

, t
166 if(narg != 7) error->all("Illegal fix wall/sph_fsi command");
167 rc = force->numeric(arg[3]);
168 r0 = force->numeric(arg[4]);
169 k = force->numeric(arg[5]);
170 t = force->numeric(arg[6]);
171 }
172

173 /* ---------------------------------------------------------------------- */
174

175 FixWallSPH_FSI::~FixWallSPH_FSI()
176 {
177

178 }
179
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180 /* ---------------------------------------------------------------------- */
181

182 int FixWallSPH_FSI::setmask()
183 {
184 int mask = 0;
185 mask |= POST_FORCE;
186 mask |= POST_FORCE_RESPA;
187 return mask;
188 }
189

190 /* ---------------------------------------------------------------------- */
191

192 void FixWallSPH_FSI::init()
193 {
194 FixSPH::init();
195

196 if (strcmp(update->integrate_style,"respa") == 0)
197 nlevels_respa = ((Respa *) update->integrate)->nlevels;
198 }
199

200 /* ---------------------------------------------------------------------- */
201

202 void FixWallSPH_FSI::setup(int vflag)
203 {
204 if (strcmp(update->integrate_style,"verlet") == 0)
205 post_force(vflag);
206 else {
207 ((Respa *) update->integrate)->copy_flevel_f(nlevels_respa-1);
208 post_force_respa(vflag,nlevels_respa-1,0);
209 ((Respa *) update->integrate)->copy_f_flevel(nlevels_respa-1);
210 }
211 }
212

213 /* ---------------------------------------------------------------------- */
214

215 void FixWallSPH_FSI::post_force(int vflag)
216 {
217 DataL* obj = lmp->exchange;
218 double dr_refine = obj->get_dr();
219

220 /*//parameters for wall interaction - will be read in via input script and
included as class members

221 double rc = 1.;
222 double r0=0.75*2*h; //equilibrium distance for adhesive effect
223 double k=100.; //maximum repulsive force at d=0
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224 double t=1.; //maximum visuous force (at d=0) and deltaV = 1 m/s in wall/SPH
interaction

225 */
226

227 double h=rc/2.; //cut-off is 2*h
228 double hinv = 1.0/h;
229 double alpha = k/(4.0*h*h*r0*(4.0*h-r0)); // see notes
230

231 double beta = (2.0*h-r0)*(2.0*h-r0);
232

233 //double alpha = k/(2.0*h*2.0*h*2.0*h*2.0*h*2.0*h*2.0*h*2.0*h*2.0*h-beta
*2.0*h*2.0*h); //8th order repulsion, 2nd order attraction

234

235 cell_list cl(lmp->domain->sublo[0],lmp->domain->subhi[0],lmp->domain->sublo
[1],

236 lmp->domain->subhi[1],lmp->domain->sublo[2],lmp->domain->subhi[2],rc);
237

238 int nlocal = lmp->atom->nlocal;
239 int* mask = lmp->atom->mask;
240 double** x = lmp->atom->x;
241 //cl.dyn_delete(); //not needed; would be, if cell list was created only

once and included as member in the DataL / exchange class
242

243 for(int i=0; i<nlocal; ++i){ //create cell list of local SPH particles
244 if (mask[i] & groupbit){
245 cl.hash(x[i],i);
246 }
247 }
248

249 //intdyn* temp2;
250 //for(int c1=0; c1<cl.nx; ++c1) // move through cell and all neighboring

cells
251 // for(int c2=0; c2<cl.ny; ++c2)
252 // for(int c3=0; c3<cl.nz; ++c3){
253 // temp2=cl.cl[c1][c2][c3];
254 // while(temp2){
255 // int num=temp2->x; //current local SPH particle number
256 // std::cout << "num out: " << num << std::endl;
257 // temp2 = temp2->next;
258 // }
259 // }
260

261 //reset force array of boundary and calculate interaction
262 obj->zerof();
263 double** f= lmp->atom->f;
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264 double** v= lmp->atom->v;
265 int nel = obj->nel;
266 int dim = obj->dim;
267

268 if(dim == 2){
269

270 double d,l,w1,w2;
271 double floc[3],ploc[3],vloc[3];
272 double fabs;
273 int ix,iy,iz,num;
274 double* r1,*r2,*v1,*v2,*f1,*f2;
275 intdyn* temp;
276

277 //3-point 1d Gauss-Legendre integration
278 int ngauss = 3;
279 double gaussp[]={-sqrt(3./5.),0.,sqrt(3./5.)};
280 double weights[]={5./9.,8./9.,5./9.};
281 //subdivision of line segments in nsub sub-segments with equal lengths dl

<= rc, if l > rc
282 //reason for this: see MM file "Single Boundary Particles vs Convolution

Integral" and notes
283 int nsub;
284 double dl;
285

286 //double alphad = 15.0/(7.0*h*h*abs(asin(1.0))*2.0); //normalization of
cubic spline kernel in 2D -- not needed anymore

287

288 for(int i=0; i<nel; ++i){
289 r1=obj->rp(obj->el(i,0)); //get coordinates and velocities of boundary

points (end points of line segment)
290 v1=obj->vp(obj->el(i,0));
291 f1=obj->fp(obj->el(i,0));
292 r2=obj->rp(obj->el(i,1));
293 v2=obj->vp(obj->el(i,1));
294 f2=obj->fp(obj->el(i,1));
295 l=sqrt( (r1[0]-r2[0])*(r1[0]-r2[0])+(r1[1]-r2[1])*(r1[1]-r2[1])+(r1[2]-r2

[2])*(r1[2]-r2[2]) );
296 //calculate necessary subdivisions
297

298 /*
299 //nsub=ceil(l/rc); //dl <= rc
300 nsub=ceil(l/(dr_refine)); //dl <= dr (cf. interface_baseclass::dr
301 dl = l/double(nsub);
302 */
303
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304 //test version based on iterative bisection
305 double div=1.0;
306 int nsub=1;
307 while(1){
308 if(l/div > dr_refine){
309 div*=2.0;
310 nsub*=2;
311 }
312 else
313 break;
314 }
315 dl = l/div;
316

317 //std::cout << l << " " << dl << " " << nsub << std::endl;
318

319 for(int isub=1; isub<=nsub; ++isub){
320

321 for(int j=0; j<ngauss; ++j){ //for every line segment (after subdivision
) 3-point Gauss-Legendre integration

322 w2 = (double(isub-1)+0.5*(gaussp[j]+1.0))*dl/l; //weights for force
distribution -- corresponding to lin interpolation

323 w1 = 1.0 - w2;
324 for(int m=0; m<3; ++m){
325 ploc[m]=r1[m]+w2*(r2[m]-r1[m]); //calculate local Gauss point
326 }
327 getindex(ix,iy,iz,ploc,cl);
328

329 //if(i==6)
330 // std::cout << "i: " << i << ", isub: " << isub << ", d_left: " <<

ploc[0] << " d_right: " << 0.05-ploc[0] << std::endl;
331

332 if(ix<=cl.nx && ix>=-1 && iy<=cl.ny && iy>=-1 && iz<=cl.nz && iz>=-1){
//check if interaction possible

333

334 for(int m=0; m<3; ++m){
335 vloc[m]=v1[m]+w2*(v2[m]-v1[m]); // velocity corresponding to ploc

with linear interpolation
336 }
337

338 for(int c1=ix-1; c1<=ix+1; ++c1) // move through cell and all
neighboring cells

339 for(int c2=iy-1; c2<=iy+1; ++c2)
340 for(int c3=iz-1; c3<=iz+1; ++c3)
341 if(c1<cl.nx && c1>=0 && c2<cl.ny && c2>=0 && c3<cl.nz && c3>=0){

//check if valid cell

230



A.11. FIX_FSI_SPH_V2_1.CPP

342 //move through all SPH particles in the cell
343 temp=cl.cl[c1][c2][c3];
344 while(temp){
345 num=temp->x; //current local SPH particle number
346

347 //std::cout << "num: " << num << " c1: " << c1 << " c2: " <<
c2 << " c3: " << c3 << std::endl;

348

349 d=sqrt( (ploc[0]-x[num][0])*(ploc[0]-x[num][0])+(ploc[1]-x[
num][1])*(ploc[1]-x[num][1])+(ploc[2]-x[num][2])*(ploc
[2]-x[num][2]) );

350

351 if(d<=2.0*h){ //cut-off
352 //boundary traction/repulsion acc to Müller,Schrim,Teschner

et al.: Interaction of fluids with deformable solids
2004

353

354 fabs = (2.0*h-d)*(2.0*h-d);
355 fabs = alpha*(fabs*fabs-beta*fabs);
356

357 /*fabs = (2.0*h-d)*(2.0*h-d);
358 fabs*=fabs;
359 fabs = alpha*(fabs*fabs-beta*(2.0*h-d)*(2.0*h-d));
360 */
361

362 //calculate force on SPH particle and add to force arrays
363 for(int q=0; q<3; ++q){
364 floc[q]=0.5*dl*weights[j]*fabs*(x[num][q]-ploc[q])/d;
365 //if(0.5*hinv*d<0.1) std::cout << "Warning: SPH-wall

distance d/rc < 1/10 encountered" << std::endl;
366

367 if(floc[q]!=floc[q]){
368 std::cout << "floc rep: " << floc[q] << std::endl;
369 //std::cin.get();
370 MPI_Abort(MPI_COMM_WORLD,1);
371 }
372 if(f[num][q]!=f[num][q]){
373 std::cout << "f rep: " << f[num][q] << std::endl;
374 //std::cin.get();
375 MPI_Abort(MPI_COMM_WORLD,1);
376 }
377

378 f[num][q]+=floc[q];
379 //force distribution to end points of line segment, see

notes and MM file
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380 f1[q]-=w1*floc[q];
381 f2[q]-=w2*floc[q];
382 }
383

384 //if(1){//num<=3 || num ==52 || num==53 || num==54){//num
==0 || num==54){

385 // std::cout << "Teilchen Nr. " << num << std::endl;
386 // std::cout << "r = (" <<x[num][0]<<", "<<x[num][1]<<",

"<<x[num][2]<<")"<<std::endl;
387 // std::cout << "v = ("<<v[num][0]<<", "<<v[num][1]<<", "<<

v[num][2]<<")"<<std::endl;
388 // std::cout << "floc rep = ("<<floc[0]<<", "<<floc[1]<<",

"<<floc[2]<<")"<<std::endl;
389 // std::cout << "f = ("<<f[num][0]<<", "<<f[num][1]<<", "<<

f[num][2]<<")"<<std::endl;
390 // std::cout << "ploc " << i << ", isub " << isub << ": "

<<ploc[0]<<", "<<ploc[1]<<", "<<ploc[2]<<")"<<std::endl
;

391 // std::cout << "vloc = ("<<vloc[0]<<", "<<vloc[1]<<", "<<
vloc[2]<<")"<<std::endl;

392 // std::cout << "d/h = " << d/h <<std::endl;
393 //}
394

395 //boundary friction / viscuous terms acc. to: see above,
but with normalized cubic spline kernel

396 fabs = d*hinv;
397

398 /* //for cubic spline:
399

400 if(fabs<=1.0)
401 fabs = 0.5*t*(-2.0+3.0*fabs);
402 else
403 fabs = 0.5*t*(2.0-fabs);
404 */
405

406 //for spiky kernel
407 fabs = 0.5*t*(2.0-fabs);
408

409 //calculate force on SPH particle and add to force arrays
410 for(int q=0; q<3; ++q){
411 floc[q]=0.5*dl*weights[j]*fabs*(vloc[q]-v[num][q]);
412

413 /*if(vloc[q]!=vloc[q]){
414 std::cout << "vwall: " << vloc[q] << std::endl;
415 std::cin.get();
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416 }
417 if(v[num][q]!=v[num][q]){
418 std::cout << "vSPH: " << v[num][q] << std::endl;
419 std::cin.get();
420 }*/
421 if(floc[q]!=floc[q]){
422 std::cout << "floc visc: " << floc[q] << std::endl;
423 //std::cin.get();
424 MPI_Abort(MPI_COMM_WORLD,1);
425 }
426 if(f[num][q]!=f[num][q]){
427 std::cout << "f visc: " << f[num][q] << std::endl;
428 //std::cin.get();
429 MPI_Abort(MPI_COMM_WORLD,1);
430 }
431

432 f[num][q]+=floc[q];
433 //force distribution to end points of line segment, see

notes and MM file
434 f1[q]-=w1*floc[q];
435 f2[q]-=w2*floc[q];
436 }
437

438 //if(1){//num<=3 || num ==52 || num==53 || num==54){//num
==0 || num==54){

439 // std::cout << "Teilchen Nr. " << num << std::endl;
440 // std::cout << "r = (" <<x[num][0]<<", "<<x[num][1]<<",

"<<x[num][2]<<")"<<std::endl;
441 // std::cout << "v = ("<<v[num][0]<<", "<<v[num][1]<<",

"<<v[num][2]<<")"<<std::endl;
442 // std::cout << "floc visc = ("<<floc[0]<<", "<<floc

[1]<<", "<<floc[2]<<")"<<std::endl;
443 // std::cout << "f = ("<<f[num][0]<<", "<<f[num][1]<<",

"<<f[num][2]<<")"<<std::endl;
444 // std::cout << "ploc " << i << ", isub " << isub << ": "

<<ploc[0]<<", "<<ploc[1]<<", "<<ploc[2]<<")"<<std::
endl;

445 // std::cout << "vloc = ("<<vloc[0]<<", "<<vloc[1]<<",
"<<vloc[2]<<")"<<std::endl;

446 // std::cout << "d/h = " << d/h <<std::endl;
447 //}
448

449 }
450 temp=temp->next;
451 }
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452 }
453 }
454 }
455 }
456 }
457 }
458 else if(dim==3){
459

460 //dim == 3;
461 int option = obj->get_refinement_option();
462 if(!(option==1 || option==2 || option==3 || option==0)){
463 std::cout << "invalid refinement option: " << " " << option << std::endl;
464 MPI_Abort(MPI_COMM_WORLD,1);
465 }
466

467 //0...no refinement, 1... recursive refinement based on original triangles
in every time step,

468 //2... pre-refined mesh, no additional refinement in time-stepping, 3... as
1, but based on pre-refined mesh; default is 1

469

470 //local Gauss weights and points (in barycentric coordinates)
471 int ngauss=7;
472 double dri = 1.0/3.0;
473 double a0 = 0.05971587;
474 double b0 = 0.47014206;
475 double c0 = 0.79742699;
476 double d0 = 0.10128651;
477 double e0 = (155.0+sqrt(15.0))/1200.0;
478 double f0 = (155.0-sqrt(15.0))/1200.0;
479

480 double rbcgauss[][3]={{dri,dri,dri},{a0,b0,b0},{b0,a0,b0},{b0,b0,a0},{c0,d0
,d0},{d0,c0,d0},{d0,d0,c0}};

481 double wgauss[]={9.0/40.0,e0,e0,e0,f0,f0,f0};
482

483 double *r1,*r2,*r3,*v1,*v2,*v3,*f1,*f2,*f3;
484

485 if(option == 0){
486 for(int i=0; i<nel; ++i){
487 r1=obj->rp(obj->el(i,0)); //get coordinates and velocities of boundary

points (end points of line segment)
488 v1=obj->vp(obj->el(i,0));
489 f1=obj->fp(obj->el(i,0));
490 r2=obj->rp(obj->el(i,1));
491 v2=obj->vp(obj->el(i,1));
492 f2=obj->fp(obj->el(i,1));
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493 r3=obj->rp(obj->el(i,2));
494 v3=obj->vp(obj->el(i,2));
495 f3=obj->fp(obj->el(i,2));
496

497 triangle_int(ngauss, rbcgauss, wgauss, x, v, f, cl, dr_refine*dr_refine,
h, alpha, beta, t, r1, r2, r3, v1, v2, v3, f1, f2, f3,

498 r1[0],r1[1],r1[2],r2[0],r2[1],r2[2],r3[0],r3[1],r3[2]);
499 }
500 }
501 else if(option==1){
502 for(int i=0; i<nel; ++i){
503 r1=obj->rp(obj->el(i,0)); //get coordinates and velocities of boundary

points (end points of line segment)
504 v1=obj->vp(obj->el(i,0));
505 f1=obj->fp(obj->el(i,0));
506 r2=obj->rp(obj->el(i,1));
507 v2=obj->vp(obj->el(i,1));
508 f2=obj->fp(obj->el(i,1));
509 r3=obj->rp(obj->el(i,2));
510 v3=obj->vp(obj->el(i,2));
511 f3=obj->fp(obj->el(i,2));
512

513 rec_triangle_int(ngauss, rbcgauss, wgauss, x, v, f, cl, dr_refine*
dr_refine, h, alpha, beta, t, r1, r2, r3, v1, v2, v3, f1, f2, f3,

514 r1[0],r1[1],r1[2],r2[0],r2[1],r2[2],r3[0],r3[1],r3[2]);
515 }
516

517 }
518 else if(option==2){
519 for(int i=0; i<nel; ++i){
520 r1=obj->rp(obj->el(i,0)); //get coordinates and velocities of boundary

points (end points of line segment)
521 v1=obj->vp(obj->el(i,0));
522 f1=obj->fp(obj->el(i,0));
523 r2=obj->rp(obj->el(i,1));
524 v2=obj->vp(obj->el(i,1));
525 f2=obj->fp(obj->el(i,1));
526 r3=obj->rp(obj->el(i,2));
527 v3=obj->vp(obj->el(i,2));
528 f3=obj->fp(obj->el(i,2));
529

530 for(int j=0; j<obj->nsub(i); ++j){
531

532 triangle_int(ngauss, rbcgauss, wgauss, x, v, f, cl, dr_refine*
dr_refine, h, alpha, beta, t, r1, r2, r3, v1, v2, v3, f1, f2, f3,
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533 obj->GetCC(i,j,0,0),obj->GetCC(i,j,0,1),obj->GetCC(i,j,0,2),obj->
GetCC(i,j,1,0),obj->GetCC(i,j,1,1),obj->GetCC(i,j,1,2),obj->GetCC
(i,j,2,0),obj->GetCC(i,j,2,1),obj->GetCC(i,j,2,2));

534

535 }
536 }
537

538 }
539 else if(option==3){
540 for(int i=0; i<nel; ++i){
541 r1=obj->rp(obj->el(i,0)); //get coordinates and velocities of boundary

points (end points of line segment)
542 v1=obj->vp(obj->el(i,0));
543 f1=obj->fp(obj->el(i,0));
544 r2=obj->rp(obj->el(i,1));
545 v2=obj->vp(obj->el(i,1));
546 f2=obj->fp(obj->el(i,1));
547 r3=obj->rp(obj->el(i,2));
548 v3=obj->vp(obj->el(i,2));
549 f3=obj->fp(obj->el(i,2));
550

551 for(int j=0; j<obj->nsub(i); ++j){
552

553 rec_triangle_int(ngauss, rbcgauss, wgauss, x, v, f, cl, dr_refine*
dr_refine, h, alpha, beta, t, r1, r2, r3, v1, v2, v3, f1, f2, f3,

554 obj->GetCC(i,j,0,0),obj->GetCC(i,j,0,1),obj->GetCC(i,j,0,2),obj->
GetCC(i,j,1,0),obj->GetCC(i,j,1,1),obj->GetCC(i,j,1,2),obj->GetCC
(i,j,2,0),obj->GetCC(i,j,2,1),obj->GetCC(i,j,2,2));

555 }
556 }
557

558 }
559

560 }
561 else{
562 cout << "Implementation only for 2D or 3D!" << endl;
563 MPI_Abort(MPI_COMM_WORLD,1);
564 }
565

566 //now, on each proc, exchange->f contains all local force contributions
567 //MPI_Reduce is done when the sendforce() member function is called in the

envoking program
568

569 }
570
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571 /* ---------------------------------------------------------------------- */
572

573 void FixWallSPH_FSI::post_force_respa(int vflag, int ilevel, int iloop)
574 {
575 if (ilevel == nlevels_respa-1) post_force(vflag);
576 }
577

578 //-----------------------------------------------------------------------//
579 //FSI wall interaction routines 3D
580 //-----------------------------------------------------------------------//
581

582 //calculates interaction of one surface triangle with the local SPH particles
and writes results to LIGGGHTS and DataL force arrays

583 //7-point Gauss surface integration
584 //using recursive mesh-refinement
585

586 //ngauss... number of Gauss points
587 //rbcgauss... barycentric coordinates of Gauss points (rbcgauss[0] is the

coordinate tripel corresponding to the first Gauss point)
588 //wgauss... corresponding weights
589 //x,v,f ... local LIGGGHTS SPH arrays
590 //cl... cell_list for cell search (pair interactions)
591 //rc2... square of force cut-off radius rc
592 //h... smoothing lenght correspondence (h = rc/2)
593 //alpha, beta... parameters for repulsive force
594 //t... parameter for viscuous force (wall friction)
595 //r1,r2,r3 ... vertices of basis triangle (from DataL object)
596 //v1,.. corresponding velocities (from DataL object)
597 //f1,.. corresponding forces (from DataL object)
598 //x11...x33 ... coordinates of vertices of current sub-triangle in recursion
599

600 void rec_triangle_int(int ngauss, double rbcgauss[][3], double wgauss[],
double** x, double** v, double** f, cell_list& cl,

601 const double& rc2, const double& h, const double& alpha, const
double& beta, const double& t,

602 const double* r1, const double* r2, const double* r3, const double*
v1, const double* v2, const double* v3, double* f1, double* f2,
double* f3,

603 double x11, double x12, double x13, double x21, double x22, double
x23, double x31, double x32, double x33){

604

605 double a2 = (x21-x11)*(x21-x11) + (x22-x12)*(x22-x12) + (x23-x13)*(
x23-x13);

606 double b2 = (x31-x21)*(x31-x21) + (x32-x22)*(x32-x22) + (x33-x23)*(
x33-x23);
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607 double c2 = (x31-x11)*(x31-x11) + (x32-x12)*(x32-x12) + (x33-x13)*(
x33-x13);

608

609 if(a2 > rc2 || b2 > rc2 || c2 > rc2) //make a recursive sub-
division if one side of current triangle is longer than rc

610 {
611 rec_triangle_int(ngauss,rbcgauss,wgauss,x,v,f,cl,rc2,h,alpha,beta

,t,r1,r2,r3,v1,v2,v3,f1,f2,f3,x11,x12,x13,0.5*(x11+x21),0.5*(
x12+x22),0.5*(x13+x23),0.5*(x11+x31),0.5*(x12+x32),0.5*(x13+
x33));

612 rec_triangle_int(ngauss,rbcgauss,wgauss,x,v,f,cl,rc2,h,alpha,beta
,t,r1,r2,r3,v1,v2,v3,f1,f2,f3,0.5*(x11+x21),0.5*(x12+x22)
,0.5*(x13+x23),x21,x22,x23,0.5*(x21+x31),0.5*(x22+x32),0.5*(
x23+x33));

613 rec_triangle_int(ngauss,rbcgauss,wgauss,x,v,f,cl,rc2,h,alpha,beta
,t,r1,r2,r3,v1,v2,v3,f1,f2,f3,0.5*(x11+x31),0.5*(x12+x32)
,0.5*(x13+x33),0.5*(x21+x31),0.5*(x22+x32),0.5*(x23+x33),x31,
x32,x33);

614 rec_triangle_int(ngauss,rbcgauss,wgauss,x,v,f,cl,rc2,h,alpha,beta
,t,r1,r2,r3,v1,v2,v3,f1,f2,f3,0.5*(x11+x21),0.5*(x12+x22)
,0.5*(x13+x23),0.5*(x11+x31),0.5*(x12+x32),0.5*(x13+x33)
,0.5*(x21+x31),0.5*(x22+x32),0.5*(x23+x33));

615 }
616 else
617 {
618 triangle_int(ngauss,rbcgauss,wgauss,x,v,f,cl,rc2,h,alpha,beta,t,

r1,r2,r3,v1,v2,v3,f1,f2,f3,x11,x12,x13,x21,x22,x23,x31,x32,
x33);

619 }
620 }
621

622 //same as rec_triangle_int, but without recursion
623 void triangle_int(int ngauss, double rbcgauss[][3], double wgauss[], double**

x, double** v, double** f, cell_list& cl,
624 const double& rc2, const double& h, const double& alpha, const double&

beta, const double& t,
625 const double* r1, const double* r2, const double* r3, const double* v1

, const double* v2, const double* v3, double* f1, double* f2,
double* f3,

626 double x11, double x12, double x13, double x21, double x22, double x23
, double x31, double x32, double x33){

627

628 double hinv=1.0/h;
629

630 double ploc[3],vloc[3],floc[3],d,fabs,area;
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631 double b1,b2,b3; //barycentric coordinates of local Gauss points w.r
.t. the original triangle

632 int ix,iy,iz,num;
633 intdyn* temp;
634

635 for(int j=0; j<ngauss; ++j){
636 //barycentric coordinates of Gauss points w.r.t. the original (un-

refined) triangle are used for force redistribution (c.f. notes
and MM notebook)

637 //and linear interpolation of quantities such as velocities (
defined only on original triangle vertices)

638

639 //local Gauss point
640 ploc[0]=rbcgauss[j][0]*x11+rbcgauss[j][1]*x21+rbcgauss[j][2]*x31;
641 ploc[1]=rbcgauss[j][0]*x12+rbcgauss[j][1]*x22+rbcgauss[j][2]*x32;
642 ploc[2]=rbcgauss[j][0]*x13+rbcgauss[j][1]*x23+rbcgauss[j][2]*x33;
643

644 getindex(ix,iy,iz,ploc,cl); //hash local Gauss point
645

646 if(ix<=cl.nx && ix>=-1 && iy<=cl.ny && iy>=-1 && iz<=cl.nz && iz
>=-1){ //check if interaction possible

647

648 //barycentric coords w.r.t. the original triangle
649 calc_barycentric_coordinates(b1,b2,b3,ploc[0],ploc[1],ploc[2],r1

[0],r2[0],r3[0],r1[1],r2[1],r3[1],r1[2],r2[2],r3[2]);
650 //velocity of local Gauss point
651 for(int m=0; m<3; ++m) vloc[m]=b1*v1[m]+b2*v2[m]+b3*v3[m];
652

653 //area of current sub-triangle
654 area = triangle_area(x11,x12,x13,x21,x22,x23,x31,x32,x33);
655

656 for(int c1=ix-1; c1<=ix+1; ++c1) // move through cell and all
neighboring cells

657 for(int c2=iy-1; c2<=iy+1; ++c2)
658 for(int c3=iz-1; c3<=iz+1; ++c3)
659 if(c1<cl.nx && c1>=0 && c2<cl.ny && c2>=0 && c3<cl.nz && c3

>=0){ //check if valid cell
660 //move through all SPH particles in the cell
661 temp=cl.cl[c1][c2][c3];
662 while(temp){
663 num=temp->x; //current local SPH particle number
664 d=sqrt( (ploc[0]-x[num][0])*(ploc[0]-x[num][0])+(ploc[1]-

x[num][1])*(ploc[1]-x[num][1])+(ploc[2]-x[num][2])*(
ploc[2]-x[num][2]) );

665 if(d<=2.0*h){ //cut-off
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666 //boundary traction/repulsion acc to Müller,Schrim,
Teschner et al.: Interaction of fluids with
deformable solids 2004

667 fabs = (2.0*h-d)*(2.0*h-d);
668 fabs = alpha*(fabs*fabs-beta*fabs);
669

670 //calculate force on SPH particle and add to force
arrays

671 for(int q=0; q<3; ++q){
672 floc[q]=area*wgauss[j]*fabs*(x[num][q]-ploc[q])/d;
673 //if(0.5*hinv*d<0.1) std::cout << "Warning: SPH-wall

distance d/rc < 1/10 encountered" << std::endl;
674

675 if(floc[q]!=floc[q]){
676 std::cout << "floc rep 3D: " << floc[q] << std::endl

;
677 MPI_Abort(MPI_COMM_WORLD,1);
678 }
679 if(f[num][q]!=f[num][q]){
680 std::cout << "f rep 3D: " << f[num][q] << std::endl;
681 MPI_Abort(MPI_COMM_WORLD,1);
682 }
683

684 f[num][q]+=floc[q];
685 //force distribution to original triangle vertices,

see notes and MM file
686 f1[q]-=b1*floc[q];
687 f2[q]-=b2*floc[q];
688 f3[q]-=b3*floc[q];
689 }
690

691 //boundary friction / viscuous terms acc. to: see above,
but with normalized cubic spline kernel

692 fabs = d*hinv;
693

694 /* //for cubic spline:
695

696 if(fabs<=1.0)
697 fabs = 0.5*t*(-2.0+3.0*fabs);
698 else
699 fabs = 0.5*t*(2.0-fabs);
700 */
701

702 //for spiky kernel
703 fabs = 0.5*t*(2.0-fabs);
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704

705 //calculate force on SPH particle and add to force
arrays

706 for(int q=0; q<3; ++q){
707 floc[q]=area*wgauss[j]*fabs*(vloc[q]-v[num][q]);
708

709 /*if(vloc[q]!=vloc[q]){
710 std::cout << "vwall: " << vloc[q] << std::endl;
711 std::cin.get();
712 }
713 if(v[num][q]!=v[num][q]){
714 std::cout << "vSPH: " << v[num][q] << std::endl;
715 std::cin.get();
716 }*/
717 if(floc[q]!=floc[q]){
718 std::cout << "floc visc 3D: " << floc[q] << std::

endl;
719

720 //for debug
721 //std::cout << "(b1,b2,b3) = " << "(" << b1 << ", "

<< b2 << ", " << b3 << ")" << std::endl;
722 //std::cout << "vloc[0] = " << vloc[0] << " " << "

vloc[1] = " << vloc[1] << " " << "vloc[2] = " <<
vloc[2] << std::endl;

723 //std::cout << "v[num][0] = " << v[num][0] << " " <<
"v[num][1] = " << v[num][1] << " " << "v[num][2]
= " << v[num][2] << std::endl;

724 //std::cout << "fabs = " << fabs << " " << "wgauss[j
] = " << wgauss[j] << " " << "area = " << area <<
std::endl;

725

726 MPI_Abort(MPI_COMM_WORLD,1);
727 }
728 if(f[num][q]!=f[num][q]){
729 std::cout << "f visc 3D: " << f[num][q] << std::endl

;
730 MPI_Abort(MPI_COMM_WORLD,1);
731 }
732

733 f[num][q]+=floc[q];
734 //force distribution to end points of line segment,

see notes and MM file
735 f1[q]-=b1*floc[q];
736 f2[q]-=b2*floc[q];
737 f3[q]-=b3*floc[q];
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738 }
739 }
740 temp=temp->next;
741 }
742 }
743 }
744 }
745

746 }
747

748 //calculates barycentric coordinates of point x=(p,q,r) in triangle with
vertices r1=(x1,y1,z1),r2=(x2,y2,z2),r3=(x3,y3,z3) and saves data in b1,b2
,b3

749 //from Christer Ericson: Real-Time Collision Detection, San Franccisco 2005
750 void calc_barycentric_coordinates(double& b1, double& b2, double& b3, double p

, double q, double r, double x1, double x2, double x3, double y1, double
y2, double y3, double z1, double z2, double z3){

751 double d00 = (x2-x1)*(x2-x1)+(y2-y1)*(y2-y1)+(z2-z1)*(z2-z1);
752 double d11 = (x3-x1)*(x3-x1)+(y3-y1)*(y3-y1)+(z3-z1)*(z3-z1);
753 double d01 = (x2-x1)*(x3-x1)+(y2-y1)*(y3-y1)+(z2-z1)*(z3-z1);
754 double d20 = (p-x1)*(x2-x1)+(q-y1)*(y2-y1)+(r-z1)*(z2-z1);
755 double d21 = (p-x1)*(x3-x1)+(q-y1)*(y3-y1)+(r-z1)*(z3-z1);
756 double denom = d00*d11 - d01*d01;
757 b2 = (d11*d20 - d01*d21)/denom;
758 b3 = (d00*d21 - d01*d20)/denom;
759 b1 = 1. - b2 - b3;
760 }
761

762 /*
763

764 //WORKS FINE, but slower?
765

766 //calculates barycentric coordinates of point x=(p,q,r) in triangle with
vertices r1=(x1,y1,z1),r2=(x2,y2,z2),r3=(x3,y3,z3) and saves data in b1,b2
,b3

767 //acc to http://mathworld.wolfram.com/ArealCoordinates.html
768 void calc_barycentric_coordinates(double& b1, double& b2, double& b3, double p

, double q, double r, double x1, double x2, double x3, double y1, double
y2, double y3, double z1, double z2, double z3){

769 double a = triangle_area_sq(x1,y1,z1,x2,y2,z2,x3,y3,z3);
770 double a1 = triangle_area_sq(p,q,r,x2,y2,z2,x3,y3,z3);
771 double a2 = triangle_area_sq(p,q,r,x3,y3,z3,x1,y1,z1);
772 b1 = sqrt(a1/a);
773 b2 = sqrt(a2/a);
774 b3 = 1.-b1-b2;
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775 }
776

777 */
778

779 /* prior versions - may yield 1/0 cases */
780 /*
781 //calculates barycentric coordinates of point x=(p,q,r) in triangle with

vertices r1=(x1,y1,z1),r2=(x2,y2,z2),r3=(x3,y3,z3) and saves data in b1,b2
,b3

782 void calc_barycentric_coordinates(double& b1, double& b2, double& b3, double p
, double q, double r, double x1, double x2, double x3, double y1, double
y2, double y3, double z1, double z2, double z3){

783 //treat tha case of all the points lying within xy,xz,yz layer independently
784 if(x1==0 && x2==0 && x3==0){
785 calc_barycentric_coordinates_yzlayer(b1,b2,b3,q,r,y1,y2,y3,z1,z2,z3);
786 //for debug
787 if(b1!=b1 || b2!=b2 || b3!=b3)
788 std::cout << "yz layer, (b1,b2,b3) = " << "(" << b1 << ", " << b2 << ", " <<

b3 << ")" << std::endl;
789 }
790 else if(y1==0 && y2==0 && y3==0){
791 calc_barycentric_coordinates_xzlayer(b1,b2,b3,p,r,x1,x2,x3,z1,z2,z3);
792 //for debug
793 if(b1!=b1 || b2!=b2 || b3!=b3)
794 std::cout << "xz layer, (b1,b2,b3) = " << "(" << b1 << ", " << b2 << ", " <<

b3 << ")" << std::endl;
795 }
796 else if(z1==0 && z2==0 && z3==0){
797 calc_barycentric_coordinates_xylayer(b1,b2,b3,p,q,x1,x2,x3,y1,y2,y3);
798 //for debug
799 if(b1!=b1 || b2!=b2 || b3!=b3)
800 std::cout << "xy layer, (b1,b2,b3) = " << "(" << b1 << ", " << b2 << ", " <<

b3 << ")" << std::endl;
801 }
802 else{
803 double n = x3*y2*z1 - x2*y3*z1 - x3*y1*z2 + x1*y3*z2 + x2*y1*z3 - x1*y2*z3;
804 b1 = (r*x3*y2 - r*x2*y3 - q*x3*z2 + p*y3*z2 + q*x2*z3 - p*y2*z3)/n;
805 b2 = -(r*x3*y1 - r*x1*y3 - q*x3*z1 + p*y3*z1 + q*x1*z3 - p*y1*z3)/n;
806 b3 = 1.0 - b1 - b2;
807 //for debug
808 if(b1!=b1 || b2!=b2 || b3!=b3){
809 std::cout << "regular, (b1,b2,b3) = " << "(" << b1 << ", " << b2 << ", " << b3

<< ")" << std::endl;
810 std::cout << "r1 = " << "(" << x1 << ", " << y1 << ", " << z1 << ")" << std::

endl;
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811 std::cout << "r2 = " << "(" << x2 << ", " << y2 << ", " << z2 << ")" << std::
endl;

812 std::cout << "r3 = " << "(" << x3 << ", " << y3 << ", " << z3 << ")" << std::
endl;

813 }
814 }
815 }
816

817 //calculate barycentric coordinates for points in yz-layer; cf. also
calc_barycentric_coordinates

818 void calc_barycentric_coordinates_yzlayer(double b1,double b2,double b3,double
q,double r,double y1,double y2,double y3,double z1,double z2,double z3){

819 b1 = (r*y2 - r*y3 - q*z2 + y3*z2 + q*z3 - y2*z3)/(y2*z1 - y3*z1 - y1*z2 + y3*
z2 + y1*z3 - y2*z3);

820 b2 = (r*(-y1 + y3) - y3*z1 + q*(z1 - z3) + y1*z3)/(y3*(-z1 + z2) + y2*(z1 - z3
) + y1*(-z2 + z3));

821 b3 = 1 - b1 - b2;
822 }
823

824 //calculate barycentric coordinates for points in xy-layer; cf. also
calc_barycentric_coordinates

825 void calc_barycentric_coordinates_xylayer(double b1,double b2,double b3,double
p,double q,double x1,double x2,double x3,double y1,double y2,double y3){

826 b1 = (q*x2 - q*x3 - p*y2 + x3*y2 + p*y3 - x2*y3)/(x2*y1 - x3*y1 - x1*y2 + x3*
y2 + x1*y3 - x2*y3);

827 b2 = (q*(-x1 + x3) - x3*y1 + p*(y1 - y3) + x1*y3)/(x3*(-y1 + y2) + x2*(y1 - y3
) + x1*(-y2 + y3));

828 b3 = 1 - b1 - b2;
829 }
830

831 //calculate barycentric coordinates for points in xz-layer; cf. also
calc_barycentric_coordinates

832 void calc_barycentric_coordinates_xzlayer(double b1,double b2,double b3,double
p,double r,double x1,double x2,double x3,double z1,double z2,double z3){

833 b1 = (r*x2 - r*x3 - p*z2 + x3*z2 + p*z3 - x2*z3)/(x2*z1 - x3*z1 - x1*z2 + x3*
z2 + x1*z3 - x2*z3);

834 b2 = (r*(-x1 + x3) - x3*z1 + p*(z1 - z3) + x1*z3)/(x3*(-z1 + z2) + x2*(z1 - z3
) + x1*(-z2 + z3));

835 b3 = 1 - b1 - b2;
836 }
837 */
838

839 //area of a triangle with vertices r1,r2,r3
840 double triangle_area(const double* r1, const double* r2, const double* r3){
841 return 0.5*sqrt(
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842 ((r1[1]-r2[1])*(r1[2]-r3[2])-(r1[1]-r3[1])*(r1[2]-r2[2]))*((r1[1]-r2[1])*(
r1[2]-r3[2])-(r1[1]-r3[1])*(r1[2]-r2[2])) +

843 ((r1[0]-r3[0])*(r1[2]-r2[2])-(r1[0]-r2[0])*(r1[2]-r3[2]))*((r1[0]-r3[0])*(
r1[2]-r2[2])-(r1[0]-r2[0])*(r1[2]-r3[2])) +

844 ((r1[0]-r2[0])*(r1[1]-r3[1])-(r1[0]-r3[0])*(r1[1]-r2[1]))*((r1[0]-r2[0])*(
r1[1]-r3[1])-(r1[0]-r3[0])*(r1[1]-r2[1]))

845 );
846 }
847

848 //area of a triangle with vertices r1=(x11,x12,x13),r2=(x21,x22,x23),r3=(x31,
x32,x33)

849 double triangle_area(double x11, double x12, double x13, double x21, double
x22, double x23, double x31, double x32, double x33){

850 return 0.5*sqrt(
851 ((x12-x22)*(x13-x33)-(x13-x23)*(x12-x32))*((x12-x22)*(x13-x33)-(x13-x23)*(

x12-x32)) +
852 ((x11-x31)*(x13-x23)-(x11-x21)*(x13-x33))*((x11-x31)*(x13-x23)-(x11-x21)*(

x13-x33)) +
853 ((x11-x21)*(x12-x32)-(x11-x31)*(x12-x22))*((x11-x21)*(x12-x32)-(x11-x31)*(

x12-x22))
854 );
855 }
856

857 //square of area of a triangle with vertices r1=(x11,x12,x13),r2=(x21,x22,x23)
,r3=(x31,x32,x33)

858 double triangle_area_sq(double x11, double x12, double x13, double x21, double
x22, double x23, double x31, double x32, double x33){

859 return 0.25*(
860 ((x12-x22)*(x13-x33)-(x13-x23)*(x12-x32))*((x12-x22)*(x13-x33)-(x13-x23)*(

x12-x32)) +
861 ((x11-x31)*(x13-x23)-(x11-x21)*(x13-x33))*((x11-x31)*(x13-x23)-(x11-x21)*(

x13-x33)) +
862 ((x11-x21)*(x12-x32)-(x11-x31)*(x12-x22))*((x11-x21)*(x12-x32)-(x11-x31)*(

x12-x22))
863 );
864 }

A.12. wrapper code LINUX.cpp

1 #include "dn.h"
2 #include "exchange_class_Linux.h"
3 #include "mpi.h"
4 #include <cassert>
5 #include <iostream>
6 #include <sstream>
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7 #include <sys/time.h>
8 #include <string>
9 using namespace std;

10

11 int str2int (const string &str) {
12 stringstream ss(str);
13 int n;
14 ss >> n;
15 return n;
16 }
17

18 void coupling(DataL& obj, int proc){
19

20 obj.getrohSPH(); // set initial densities
21 obj.set_timestep(); //get timestep
22 //cout << "time step read" << endl;
23

24 timeval t1,t2,res;
25 double tin=0.0;
26 gettimeofday(&t1,NULL);
27

28 obj.readone(); //initializing steps for equilibration with very high
viscosity

29 obj.readone(); // actual viscosity
30 obj.readone(); //"run 0" to recalculate forces for new viscosity
31

32 gettimeofday(&t2,NULL);
33 timersub(&t2,&t1,&res);
34 tin+=res.tv_sec*1000.0; //add consumed time in ms
35 tin+=res.tv_usec/1000.0;
36

37 //cout << endl << tin << endl;
38

39 double ctime=0.0;
40 int count = 0;
41

42 while(1){
43

44 obj.set_timestep(); //get timestep
45 if(obj.recv_command()==0){ //get r,v or dummy
46 if(proc==0) cout << "received unknown command from server" << endl;
47 break;
48 }
49

50 //run 1 time step "run 1 pre no post no"
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51 if(proc == 0) gettimeofday(&t1,NULL);
52 if(!obj.readone()){
53 break;
54 }
55 if(proc == 0){
56 gettimeofday(&t2,NULL);
57 timersub(&t2,&t1,&res);
58 ctime+=res.tv_sec*1000.0; //add consumed time in ms
59 ctime+=res.tv_usec/1000.0;
60 ++count;
61 }
62

63 if(obj.recv_command()==0){ //send force or force,rSPH,vSPH,rohSPH,...
64 if(proc==0) cout << "received unknown command from server" << endl;
65 break;
66 }
67 if(obj.recv_command()==0){ //send force or dummy
68 if(proc==0) cout << "received unknown command from server" << endl;
69 break;
70 }
71

72 }
73

74 if(proc == 0){
75 cout << "total time of FSI calulation (in ms): " << ctime << " time per

timestep: " << ctime/count << endl;
76 cout << "time of initializing step(s) - LIGGGHTS only: " << tin << endl;
77 }
78

79 }
80

81 int main(int argc, char* argv[]){
82

83 if(argc < 3){
84 cout << "To run this client, enter: mpirun -np x name ip port [liggghts

command line args]" << endl << "x ... number of procs" << endl <<
85 "name ... name of the client executable" << endl << "e.g.: mpirun -np 4

main 192.168.56.1 12345 -log none -screen none" << endl;
86 MPI_Finalize();
87 return 0;
88 }
89

90 MPI_Init(&argc,&argv);
91

92 int proc,nprocs;
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93 MPI_Comm_rank(MPI_COMM_WORLD,&proc); //ESSENTIAL CALLS!! even if information
is not used explicitly

94 MPI_Comm_size(MPI_COMM_WORLD,&nprocs);
95

96 // std::string a1,a2,a3,a4,
97 std::string temp1;
98 short port;
99

100 if(proc == 0){
101 /*
102 cout << "Server-IP a1.a2.a3.a4 (IPv4): " << endl << "a1: " << endl;
103 cin >> a1;
104 cout << "a2: " << endl;
105 cin >> a2;
106 cout << "a3: " << endl;
107 cin >> a3;
108 cout << "a4: " << endl;
109 cin >> a4;
110 cout << "Port: " << endl;
111 cin >> port;
112 */
113 // a1="192"; a2="168"; a3="12"; a4="34"; port=12345;
114 // a1="140"; a2="78"; a3="135"; a4="130"; port=12345;
115

116 //temp1.append(a1).append(".").append(a2).append(".").append(a3).append
(".").append(a4);

117 temp1 = (string)argv[1];
118 port = (short)str2int((string)argv[2]);
119 }
120

121 while(1){
122 if(argc > 3){
123 DataL obj(&temp1,&port,argc-2,argv+2); //argv+2 ... pointer arithmetics
124 coupling(obj,proc);
125 }
126 else{
127 DataL obj(&temp1,&port);
128 coupling(obj,proc);
129 }
130

131 }
132

133 MPI_Finalize();
134 return 0;
135 }
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