.. index:: dump_modify dump_modify command =================== Syntax """""" .. parsed-literal:: dump_modify dump-ID keyword values ... * dump-ID = ID of dump to modify * one or more keyword/value pairs may be appended * these keywords apply to various dump styles * keyword = *append* or *buffer* or *element* or *every* or *fileper* or *first* or *flush* or *format* or *image* or *label* or *nfile* or *pad* or *precision* or *region* or *scale* or *sort* or *thresh* or *unwrap* or *binary* or *compressor* .. parsed-literal:: *append* arg = *yes* or *no* *buffer* arg = *yes* or *no* *binary* arg = *yes* or *no* (VTK dumps only) *compressor* arg = *none* or *zlib* or *lz4* (VTK dumps only) *element* args = E1 E2 ... EN, where N = # of atom types E1,...,EN = element name, e.g. C or Fe or Ga *every* arg = N N = dump every this many timesteps N can be a variable (see below) *fileper* arg = Np Np = write one file for every this many processors *first* arg = *yes* or *no* *format* arg = C-style format string for one line of output *flush* arg = *yes* or *no* *image* arg = *yes* or *no* *label* arg = string string = character string (e.g. BONDS) to use in header of dump local file *nfile* arg = Nf Nf = write this many files, one from each of Nf processors *pad* arg = Nchar = # of characters to convert timestep to *precision* arg = power-of-10 value from 10 to 1000000 *region* arg = region-ID or "none" *scale* arg = *yes* or *no* *sort* arg = *off* or *id* or N or -N off = no sorting of per-atom lines within a snapshot id = sort per-atom lines by atom ID N = sort per-atom lines in ascending order by the Nth column -N = sort per-atom lines in descending order by the Nth column *thresh* args = attribute operation value attribute = same attributes (x,fy,etotal,sxx,etc) used by dump custom style operation = "<" or "<=" or ">" or ">=" or "==" or "!=" value = numeric value to compare to these 3 args can be replaced by the word "none" to turn off thresholding *unwrap* arg = *yes* or *no* * these keywords apply only to the *image* and *movie* :doc:`styles ` * keyword = *acolor* or *adiam* or *amap* or *bcolor* or *bdiam* or *backcolor* or *boxcolor* or *color* or *bitrate* or *framerate* .. parsed-literal:: *acolor* args = type color type = atom type or range of types (see below) color = name of color or color1/color2/... *adiam* args = type diam type = atom type or range of types (see below) diam = diameter of atoms of that type (distance units) *amap* args = lo hi style delta N entry1 entry2 ... entryN lo = number or *min* = lower bound of range of color map hi = number or *max* = upper bound of range of color map style = 2 letters = "c" or "d" or "s" plus "a" or "f" "c" for continuous "d" for discrete "s" for sequential "a" for absolute "f" for fractional delta = binsize (only used for style "s", otherwise ignored) binsize = range is divided into bins of this width N = # of subsequent entries entry = value color (for continuous style) value = number or *min* or *max* = single value within range color = name of color used for that value entry = lo hi color (for discrete style) lo/hi = number or *min* or *max* = lower/upper bound of subset of range color = name of color used for that subset of values entry = color (for sequential style) color = name of color used for a bin of values *backcolor* arg = color color = name of color for background *bcolor* args = type color type = bond type or range of types (see below) color = name of color or color1/color2/... *bdiam* args = type diam type = bond type or range of types (see below) diam = diameter of bonds of that type (distance units) *bitrate* arg = rate rate = target bitrate for movie in kbps *boxcolor* arg = color color = name of color for box lines *color* args = name R G B name = name of color R,G,B = red/green/blue numeric values from 0.0 to 1.0 *framerate* arg = fps fps = frames per second for movie Examples """""""" .. parsed-literal:: dump_modify 1 format "%d %d %20.15g %g %g" scale yes dump_modify myDump image yes scale no flush yes dump_modify 1 region mySphere thresh x < 0.0 thresh epair >= 3.2 dump_modify xtcdump precision 10000 dump_modify 1 every 1000 nfile 20 dump_modify 1 every v_myVar dump_modify 1 amap min max cf 0.0 3 min green 0.5 yellow max blue boxcolor red Description """"""""""" Modify the parameters of a previously defined dump command. Not all parameters are relevant to all dump styles. These keywords apply to various dump styles, including the :doc:`dump image ` and :doc:`dump movie ` styles. The description gives details. ---------- The *append* keyword applies to all dump styles except *cfg* and *xtc* and *dcd*. It also applies only to text output files, not to binary or gzipped or image/movie files. If specified as *yes*, then dump snapshots are appended to the end of an existing dump file. If specified as *no*, then a new dump file will be created which will overwrite an existing file with the same name. This keyword can only take effect if the dump_modify command is used after the :doc:`dump ` command, but before the first command that causes dump snapshots to be output, e.g. a :doc:`run ` or :doc:`minimize ` command. Once the dump file has been opened, this keyword has no further effect. ---------- The *buffer* keyword applies only to dump styles *atom*, *custom*, *local*, and *xyz*. It also applies only to text output files, not to binary or gzipped files. If specified as *yes*, which is the default, then each processor writes its output into an internal text buffer, which is then sent to the processor(s) which perform file writes, and written by those processors(s) as one large chunk of text. If specified as *no*, each processor sends its per-atom data in binary format to the processor(s) which perform file wirtes, and those processor(s) format and write it line by line into the output file. The buffering mode is typically faster since each processor does the relatively expensive task of formatting the output for its own atoms. However it requires about twice the memory (per processor) for the extra buffering. ---------- If *dump_modify binary* is used, the dump file (or files, if "*" or "%" is also used) is written in binary format. A binary dump file will be about the same size as a text version, but will typically write out much faster. .. note:: This modifier is only available for VTK style dumps ---------- *dump_modify compressor* can be used to specify the writing of compressed binary data (automatically sets *dump_modify binary yes*). Options for compressors include: .. parsed-literal:: none: No compression zlib: Zlib compression lz4: Lz4 compression (VTK >= 8.0 required) .. note:: This modifier is only available for VTK style dumps ---------- The *element* keyword applies only to the the dump *cfg*, *xyz*, and *image* styles. It associates element names (e.g. H, C, Fe) with LIGGGHTS(R)-PUBLIC atom types. See the list of element names at the bottom of this page. In the case of dump *cfg*, this allows the `AtomEye `_ visualization package to read the dump file and render atoms with the appropriate size and color. In the case of dump *image*, the output images will follow the same `AtomEye `_ convention. An element name is specified for each atom type (1 to Ntype) in the simulation. The same element name can be given to multiple atom types. In the case of *xyz* format dumps, there are no restrictions to what label can be used as an element name. Any whitespace separated text will be accepted. .. _atomeye: http://mt.seas.upenn.edu/Archive/Graphics/A ---------- The *every* keyword changes the dump frequency originally specified by the :doc:`dump ` command to a new value. The every keyword can be specified in one of two ways. It can be a numeric value in which case it must be > 0. Or it can be an :doc:`equal-style variable `, which should be specified as v_name, where name is the variable name. In this case, the variable is evaluated at the beginning of a run to determine the next timestep at which a dump snapshot will be written out. On that timestep the variable will be evaluated again to determine the next timestep, etc. Thus the variable should return timestep values. See the stagger() and logfreq() and stride() math functions for :doc:`equal-style variables `, as examples of useful functions to use in this context. Other similar math functions could easily be added as options for :doc:`equal-style variables `. Also see the next() function, which allows use of a file-style variable which reads successive values from a file, each time the variable is evaluated. Used with the *every* keyword, if the file contains a list of ascending timesteps, you can output snapshots whenever you wish. Note that when using the variable option with the *every* keyword, you need to use the *first* option if you want an initial snapshot written to the dump file. The *every* keyword cannot be used with the dump *dcd* style. For example, the following commands will write snapshots at timesteps 0,10,20,30,100,200,300,1000,2000,etc: .. parsed-literal:: variable s equal logfreq(10,3,10) dump 1 all atom 100 tmp.dump dump_modify 1 every v_s first yes The following commands would write snapshots at the timesteps listed in file tmp.times: .. parsed-literal:: variable f file tmp.times variable s equal next(f) dump 1 all atom 100 tmp.dump dump_modify 1 every v_s .. warning:: When using a file-style variable with the *every* keyword, the file of timesteps must list a first timestep that is beyond the current timestep (e.g. it cannot be 0). And it must list one or more timesteps beyond the length of the run you perform. This is because the dump command will generate an error if the next timestep it reads from the file is not a value greater than the current timestep. Thus if you wanted output on steps 0,15,100 of a 100-timestep run, the file should contain the values 15,100,101 and you should also use the dump_modify first command. Any final value > 100 could be used in place of 101. ---------- The *first* keyword determines whether a dump snapshot is written on the very first timestep after the dump command is invoked. This will always occur if the current timestep is a multiple of N, the frequency specified in the :doc:`dump ` command, including timestep 0. But if this is not the case, a dump snapshot will only be written if the setting of this keyword is *yes*. If it is *no*, which is the default, then it will not be written. ---------- The *flush* keyword determines whether a flush operation is invoked after a dump snapshot is written to the dump file. A flush insures the output in that file is current (no buffering by the OS), even if LIGGGHTS(R)-PUBLIC halts before the simulation completes. Flushes cannot be performed with dump style *xtc*. The text-based dump styles have a default C-style format string which simply specifies %d for integers and %g for real values. The *format* keyword can be used to override the default with a new C-style format string. Do not include a trailing "\n" newline character in the format string. This option has no effect on the *dcd* and *xtc* dump styles since they write binary files. Note that for the *cfg* style, the first two fields (atom id and type) are not actually written into the CFG file, though you must include formats for them in the format string. ---------- The *fileper* keyword is documented below with the *nfile* keyword. ---------- The *image* keyword applies only to the dump *atom* style. If the image value is *yes*, 3 flags are appended to each atom's coords which are the absolute box image of the atom in each dimension. For example, an x image flag of -2 with a normalized coord of 0.5 means the atom is in the center of the box, but has passed thru the box boundary 2 times and is really 2 box lengths to the left of its current coordinate. Note that for dump style *custom* these various values can be printed in the dump file by using the appropriate atom attributes in the dump command itself. ---------- The *label* keyword applies only to the dump *local* style. When it writes local information, such as bond or angle topology to a dump file, it will use the specified *label* to format the header. By default this includes 2 lines: .. parsed-literal:: ITEM: NUMBER OF ENTRIES ITEM: ENTRIES ... The word "ENTRIES" will be replaced with the string specified, e.g. BONDS or ANGLES. ---------- The *nfile* or *fileper* keywords can be used in conjunction with the "%" wildcard character in the specified dump file name, for all dump styles except the *dcd*, *image*, *movie*, *xtc*, and *xyz* styles (for which "%" is not allowed). As explained on the :doc:`dump ` command doc page, the "%" character causes the dump file to be written in pieces, one piece for each of P processors. By default P = the number of processors the simulation is running on. The *nfile* or *fileper* keyword can be used to set P to a smaller value, which can be more efficient when running on a large number of processors. The *nfile* keyword sets P to the specified Nf value. For example, if Nf = 4, and the simulation is running on 100 processors, 4 files will be written, by processors 0,25,50,75. Each will collect information from itself and the next 24 processors and write it to a dump file. For the *fileper* keyword, the specified value of Np means write one file for every Np processors. For example, if Np = 4, every 4th processor (0,4,8,12,etc) will collect information from itself and the next 3 processors and write it to a dump file. ---------- The *pad* keyword only applies when the dump filename is specified with a wildcard "*" character which becomes the timestep. If *pad* is 0, which is the default, the timestep is converted into a string of unpadded length, e.g. 100 or 12000 or 2000000. When *pad* is specified with *Nchar* > 0, the string is padded with leading zeroes so they are all the same length = *Nchar*. For example, pad 7 would yield 0000100, 0012000, 2000000. This can be useful so that post-processing programs can easily read the files in ascending timestep order. ---------- The *precision* keyword only applies to the dump *xtc* style. A specified value of N means that coordinates are stored to 1/N nanometer accuracy, e.g. for N = 1000, the coordinates are written to 1/1000 nanometer accuracy. ---------- The *region* keyword only applies to the dump *custom*, *cfg*, *image*, and *movie* styles. If specified, only atoms in the region will be written to the dump file or included in the image/movie. Only one region can be applied as a filter (the last one specified). See the :doc:`region ` command for more details. Note that a region can be defined as the "inside" or "outside" of a geometric shape, and it can be the "union" or "intersection" of a series of simpler regions. ---------- The *scale* keyword applies only to the dump *atom* style. A scale value of *yes* means atom coords are written in normalized units from 0.0 to 1.0 in each box dimension. If the simluation box is triclinic (tilted), then all atom coords will still be between 0.0 and 1.0. A value of *no* means they are written in absolute distance units (e.g. Angstroms or sigma). ---------- The *sort* keyword determines whether lines of per-atom output in a snapshot are sorted or not. A sort value of *off* means they will typically be written in indeterminate order, either in serial or parallel. This is the case even in serial if the :doc:`atom_modify sort ` option is turned on, which it is by default, to improve performance. A sort value of *id* means sort the output by atom ID. A sort value of N or -N means sort the output by the value in the Nth column of per-atom info in either ascending or descending order. The dump *local* style cannot be sorted by atom ID, since there are typically multiple lines of output per atom. Some dump styles, such as *dcd* and *xtc*, require sorting by atom ID to format the output file correctly. If multiple processors are writing the dump file, via the "%" wildcard in the dump filename, then sorting cannot be performed. .. warning:: Unless it is required by the dump style, sorting dump file output requires extra overhead in terms of CPU and communication cost, as well as memory, versus unsorted output. ---------- The *thresh* keyword only applies to the dump *custom*, *cfg*, *image*, and *movie* styles. Multiple thresholds can be specified. Specifying "none" turns off all threshold criteria. If thresholds are specified, only atoms whose attributes meet all the threshold criteria are written to the dump file or included in the image. The possible attributes that can be tested for are the same as those that can be specified in the :doc:`dump custom ` command, with the exception of the *element* attribute, since it is not a numeric value. Note that different attributes can be output by the dump custom command than are used as threshold criteria by the dump_modify command. E.g. you can output the coordinates and stress of atoms whose energy is above some threshold. ---------- The *unwrap* keyword only applies to the dump *dcd* and *xtc* styles. If set to *yes*, coordinates will be written "unwrapped" by the image flags for each atom. Unwrapped means that if the atom has passed thru a periodic boundary one or more times, the value is printed for what the coordinate would be if it had not been wrapped back into the periodic box. Note that these coordinates may thus be far outside the box size stored with the snapshot. These keywords apply only to the :doc:`dump image ` and :doc:`dump movie ` styles. Any keyword that affects an image, also affects a movie, since the movie is simply a collection of images. Some of the keywords only affect the :doc:`dump movie ` style. The description gives details. ---------- The *acolor* keyword can be used with the :doc:`dump image ` command, when its atom color setting is *type*, to set the color that atoms of each type will be drawn in the image. The specified *type* should be an integer from 1 to Ntypes = the number of atom types. A wildcard asterisk can be used in place of or in conjunction with the *type* argument to specify a range of atom types. This takes the form "*" or "*n" or "n*" or "m*n". If N = the number of atom types, then an asterisk with no numeric values means all types from 1 to N. A leading asterisk means all types from 1 to n (inclusive). A trailing asterisk means all types from n to N (inclusive). A middle asterisk means all types from m to n (inclusive). The specified *color* can be a single color which is any of the 140 pre-defined colors (see below) or a color name defined by the dump_modify color option. Or it can be two or more colors separated by a "/" character, e.g. red/green/blue. In the former case, that color is assigned to all the specified atom types. In the latter case, the list of colors are assigned in a round-robin fashion to each of the specified atom types. ---------- The *adiam* keyword can be used with the :doc:`dump image ` command, when its atom diameter setting is *type*, to set the size that atoms of each type will be drawn in the image. The specified *type* should be an integer from 1 to Ntypes. As with the *acolor* keyword, a wildcard asterisk can be used as part of the *type* argument to specify a range of atomt types. The specified *diam* is the size in whatever distance :doc:`units ` the input script is using, e.g. Angstroms. ---------- The *amap* keyword can be used with the :doc:`dump image ` command, with its *atom* keyword, when its atom setting is an atom-attribute, to setup a color map. The color map is used to assign a specific RGB (red/green/blue) color value to an individual atom when it is drawn, based on the atom's attribute, which is a numeric value, e.g. its x-component of velocity if the atom-attribute "vx" was specified. The basic idea of a color map is that the atom-attribute will be within a range of values, and that range is associated with a a series of colors (e.g. red, blue, green). An atom's specific value (vx = -3.2) can then mapped to the series of colors (e.g. halfway between red and blue), and a specific color is determined via an interpolation procedure. There are many possible options for the color map, enabled by the *amap* keyword. Here are the details. The *lo* and *hi* settings determine the range of values allowed for the atom attribute. If numeric values are used for *lo* and/or *hi*, then values that are lower/higher than that value are set to the value. I.e. the range is static. If *lo* is specified as *min* or *hi* as *max* then the range is dynamic, and the lower and/or upper bound will be calculated each time an image is drawn, based on the set of atoms being visualized. The *style* setting is two letters, such as "ca". The first letter is either "c" for continuous, "d" for discrete, or "s" for sequential. The second letter is either "a" for absolute, or "f" for fractional. A continuous color map is one in which the color changes continuously from value to value within the range. A discrete color map is one in which discrete colors are assigned to sub-ranges of values within the range. A sequential color map is one in which discrete colors are assigned to a sequence of sub-ranges of values covering the entire range. An absolute color map is one in which the values to which colors are assigned are specified explicitly as values within the range. A fractional color map is one in which the values to which colors are assigned are specified as a fractional portion of the range. For example if the range is from -10.0 to 10.0, and the color red is to be assigned to atoms with a value of 5.0, then for an absolute color map the number 5.0 would be used. But for a fractional map, the number 0.75 would be used since 5.0 is 3/4 of the way from -10.0 to 10.0. The *delta* setting must be specified for all styles, but is only used for the sequential style; otherwise the value is ignored. It specifies the bin size to use within the range for assigning consecutive colors to. For example, if the range is from -10.0 to 10.0 and a *delta* of 1.0 is used, then 20 colors will be assigned to the range. The first will be from -10.0 <= color1 < -9.0, then 2nd from -9.0 <= color2 < -8.0, etc. The *N* setting is how many entries follow. The format of the entries depends on whether the color map style is continuous, discrete or sequential. In all cases the *color* setting can be any of the 140 pre-defined colors (see below) or a color name defined by the dump_modify color option. For continuous color maps, each entry has a *value* and a *color*. The *value* is either a number within the range of values or *min* or *max*. The *value* of the first entry must be *min* and the *value* of the last entry must be *max*. Any entries in between must have increasing values. Note that numeric values can be specified either as absolute numbers or as fractions (0.0 to 1.0) of the range, depending on the "a" or "f" in the style setting for the color map. Here is how the entries are used to determine the color of an individual atom, given the value X of its atom attribute. X will fall between 2 of the entry values. The color of the atom is linearly interpolated (in each of the RGB values) between the 2 colors associated with those entries. For example, if X = -5.0 and the 2 surrounding entries are "red" at -10.0 and "blue" at 0.0, then the atom's color will be halfway between "red" and "blue", which happens to be "purple". For discrete color maps, each entry has a *lo* and *hi* value and a *color*. The *lo* and *hi* settings are either numbers within the range of values or *lo* can be *min* or *hi* can be *max*. The *lo* and *hi* settings of the last entry must be *min* and *max*. Other entries can have any *lo* and *hi* values and the sub-ranges of different values can overlap. Note that numeric *lo* and *hi* values can be specified either as absolute numbers or as fractions (0.0 to 1.0) of the range, depending on the "a" or "f" in the style setting for the color map. Here is how the entries are used to determine the color of an individual atom, given the value X of its atom attribute. The entries are scanned from first to last. The first time that *lo* <= X <= *hi*, X is assigned the color associated with that entry. You can think of the last entry as assigning a default color (since it will always be matched by X), and the earlier entries as colors that override the default. Also note that no interpolation of a color RGB is done. All atoms will be drawn with one of the colors in the list of entries. For sequential color maps, each entry has only a *color*. Here is how the entries are used to determine the color of an individual atom, given the value X of its atom attribute. The range is partitioned into N bins of width *binsize*. Thus X will fall in a specific bin from 1 to N, say the Mth bin. If it falls on a boundary between 2 bins, it is considered to be in the higher of the 2 bins. Each bin is assigned a color from the E entries. If E < N, then the colors are repeated. For example if 2 entries with colors red and green are specified, then the odd numbered bins will be red and the even bins green. The color of the atom is the color of its bin. Note that the sequential color map is really a shorthand way of defining a discrete color map without having to specify where all the bin boundaries are. ---------- The *backcolor* sets the background color of the images. The color name can be any of the 140 pre-defined colors (see below) or a color name defined by the dump_modify color option. ---------- The *bcolor* keyword can be used with the :doc:`dump image ` command, with its *bond* keyword, when its color setting is *type*, to set the color that bonds of each type will be drawn in the image. The specified *type* should be an integer from 1 to Nbondtypes = the number of bond types. A wildcard asterisk can be used in place of or in conjunction with the *type* argument to specify a range of bond types. This takes the form "*" or "*n" or "n*" or "m*n". If N = the number of bond types, then an asterisk with no numeric values means all types from 1 to N. A leading asterisk means all types from 1 to n (inclusive). A trailing asterisk means all types from n to N (inclusive). A middle asterisk means all types from m to n (inclusive). The specified *color* can be a single color which is any of the 140 pre-defined colors (see below) or a color name defined by the dump_modify color option. Or it can be two or more colors separated by a "/" character, e.g. red/green/blue. In the former case, that color is assigned to all the specified bond types. In the latter case, the list of colors are assigned in a round-robin fashion to each of the specified bond types. ---------- The *bdiam* keyword can be used with the :doc:`dump image ` command, with its *bond* keyword, when its diam setting is *type*, to set the diameter that bonds of each type will be drawn in the image. The specified *type* should be an integer from 1 to Nbondtypes. As with the *bcolor* keyword, a wildcard asterisk can be used as part of the *type* argument to specify a range of bond types. The specified *diam* is the size in whatever distance :doc:`units ` you are using, e.g. Angstroms. ---------- The *bitrate* keyword can be used with the :doc:`dump movie ` command to define the size of the resulting movie file and its quality via setting how many kbits per second are to be used for the movie file. Higher bitrates require less compression and will result in higher quality movies. The quality is also determined by the compression format and encoder. The default setting is 2000 kbit/s, which will result in average quality with older compression formats. .. warning:: Not all movie file formats supported by dump movie allow the bitrate to be set. If not, the setting is silently ignored. ---------- The *boxcolor* keyword sets the color of the simulation box drawn around the atoms in each image. See the "dump image box" command for how to specify that a box be drawn. The color name can be any of the 140 pre-defined colors (see below) or a color name defined by the dump_modify color option. ---------- The *color* keyword allows definition of a new color name, in addition to the 140-predefined colors (see below), and associates 3 red/green/blue RGB values with that color name. The color name can then be used with any other dump_modify keyword that takes a color name as a value. The RGB values should each be floating point values between 0.0 and 1.0 inclusive. When a color name is converted to RGB values, the user-defined color names are searched first, then the 140 pre-defined color names. This means you can also use the *color* keyword to overwrite one of the pre-defined color names with new RBG values. ---------- The *framerate* keyword can be used with the :doc:`dump movie ` command to define the duration of the resulting movie file. Movie files written by the dump *movie* command have a default frame rate of 24 frames per second and the images generated will be converted at that rate. Thus a sequence of 1000 dump images will result in a movie of about 42 seconds. To make a movie run longer you can either generate images more frequently or lower the frame rate. To speed a movie up, you can do the inverse. Using a frame rate higher than 24 is not recommended, as it will result in simply dropping the rendered images. It is more efficient to dump images less frequently. Restrictions """""""""""" none Related commands """""""""""""""" :doc:`dump `, :doc:`dump image `, :doc:`undump ` Default """"""" The option defaults are * append = no * buffer = yes for dump styles *atom*, *custom*, *loca*, and *xyz* * element = "C" for every atom type * every = whatever it was set to via the :doc:`dump ` command * fileper = # of processors * first = no * flush = yes * format = %d and %g for each integer or floating point value * image = no * label = ENTRIES * nfile = 1 * pad = 0 * precision = 1000 * region = none * scale = yes * sort = off for dump styles *atom*, *custom*, *cfg*, and *local* * sort = id for dump styles *dcd*, *xtc*, and *xyz* * thresh = none * unwrap = no * acolor = * red/green/blue/yellow/aqua/cyan * adiam = * 1.0 * amap = min max cf 0.0 2 min blue max red * backcolor = black * bcolor = * red/green/blue/yellow/aqua/cyan * bdiam = * 0.5 * bitrate = 2000 * boxcolor = yellow * color = 140 color names are pre-defined as listed below * framerate = 24 ---------- These are the standard 109 element names that LIGGGHTS(R)-PUBLIC pre-defines for use with the :doc:`dump image ` and dump_modify commands. * 1-10 = "H", "He", "Li", "Be", "B", "C", "N", "O", "F", "Ne" * 11-20 = "Na", "Mg", "Al", "Si", "P", "S", "Cl", "Ar", "K", "Ca" * 21-30 = "Sc", "Ti", "V", "Cr", "Mn", "Fe", "Co", "Ni", "Cu", "Zn" * 31-40 = "Ga", "Ge", "As", "Se", "Br", "Kr", "Rb", "Sr", "Y", "Zr" * 41-50 = "Nb", "Mo", "Tc", "Ru", "Rh", "Pd", "Ag", "Cd", "In", "Sn" * 51-60 = "Sb", "Te", "I", "Xe", "Cs", "Ba", "La", "Ce", "Pr", "Nd" * 61-70 = "Pm", "Sm", "Eu", "Gd", "Tb", "Dy", "Ho", "Er", "Tm", "Yb" * 71-80 = "Lu", "Hf", "Ta", "W", "Re", "Os", "Ir", "Pt", "Au", "Hg" * 81-90 = "Tl", "Pb", "Bi", "Po", "At", "Rn", "Fr", "Ra", "Ac", "Th" * 91-100 = "Pa", "U", "Np", "Pu", "Am", "Cm", "Bk", "Cf", "Es", "Fm" * 101-109 = "Md", "No", "Lr", "Rf", "Db", "Sg", "Bh", "Hs", "Mt" ---------- These are the 140 colors that LIGGGHTS(R)-PUBLIC pre-defines for use with the :doc:`dump image ` and dump_modify commands. Additional colors can be defined with the dump_modify color command. The 3 numbers listed for each name are the RGB (red/green/blue) values. Divide each value by 255 to get the equivalent 0.0 to 1.0 value. +-------------------------------+--------------------------------------+---------------------------------+--------------------------------+--------------------------------+ | aliceblue = 240, 248, 255 | antiquewhite = 250, 235, 215 | aqua = 0, 255, 255 | aquamarine = 127, 255, 212 | azure = 240, 255, 255 | +-------------------------------+--------------------------------------+---------------------------------+--------------------------------+--------------------------------+ | beige = 245, 245, 220 | bisque = 255, 228, 196 | black = 0, 0, 0 | blanchedalmond = 255, 255, 205 | blue = 0, 0, 255 | +-------------------------------+--------------------------------------+---------------------------------+--------------------------------+--------------------------------+ | blueviolet = 138, 43, 226 | brown = 165, 42, 42 | burlywood = 222, 184, 135 | cadetblue = 95, 158, 160 | chartreuse = 127, 255, 0 | +-------------------------------+--------------------------------------+---------------------------------+--------------------------------+--------------------------------+ | chocolate = 210, 105, 30 | coral = 255, 127, 80 | cornflowerblue = 100, 149, 237 | cornsilk = 255, 248, 220 | crimson = 220, 20, 60 | +-------------------------------+--------------------------------------+---------------------------------+--------------------------------+--------------------------------+ | cyan = 0, 255, 255 | darkblue = 0, 0, 139 | darkcyan = 0, 139, 139 | darkgoldenrod = 184, 134, 11 | darkgray = 169, 169, 169 | +-------------------------------+--------------------------------------+---------------------------------+--------------------------------+--------------------------------+ | darkgreen = 0, 100, 0 | darkkhaki = 189, 183, 107 | darkmagenta = 139, 0, 139 | darkolivegreen = 85, 107, 47 | darkorange = 255, 140, 0 | +-------------------------------+--------------------------------------+---------------------------------+--------------------------------+--------------------------------+ | darkorchid = 153, 50, 204 | darkred = 139, 0, 0 | darksalmon = 233, 150, 122 | darkseagreen = 143, 188, 143 | darkslateblue = 72, 61, 139 | +-------------------------------+--------------------------------------+---------------------------------+--------------------------------+--------------------------------+ | darkslategray = 47, 79, 79 | darkturquoise = 0, 206, 209 | darkviolet = 148, 0, 211 | deeppink = 255, 20, 147 | deepskyblue = 0, 191, 255 | +-------------------------------+--------------------------------------+---------------------------------+--------------------------------+--------------------------------+ | dimgray = 105, 105, 105 | dodgerblue = 30, 144, 255 | firebrick = 178, 34, 34 | floralwhite = 255, 250, 240 | forestgreen = 34, 139, 34 | +-------------------------------+--------------------------------------+---------------------------------+--------------------------------+--------------------------------+ | fuchsia = 255, 0, 255 | gainsboro = 220, 220, 220 | ghostwhite = 248, 248, 255 | gold = 255, 215, 0 | goldenrod = 218, 165, 32 | +-------------------------------+--------------------------------------+---------------------------------+--------------------------------+--------------------------------+ | gray = 128, 128, 128 | green = 0, 128, 0 | greenyellow = 173, 255, 47 | honeydew = 240, 255, 240 | hotpink = 255, 105, 180 | +-------------------------------+--------------------------------------+---------------------------------+--------------------------------+--------------------------------+ | indianred = 205, 92, 92 | indigo = 75, 0, 130 | ivory = 255, 240, 240 | khaki = 240, 230, 140 | lavender = 230, 230, 250 | +-------------------------------+--------------------------------------+---------------------------------+--------------------------------+--------------------------------+ | lavenderblush = 255, 240, 245 | lawngreen = 124, 252, 0 | lemonchiffon = 255, 250, 205 | lightblue = 173, 216, 230 | lightcoral = 240, 128, 128 | +-------------------------------+--------------------------------------+---------------------------------+--------------------------------+--------------------------------+ | lightcyan = 224, 255, 255 | lightgoldenrodyellow = 250, 250, 210 | lightgreen = 144, 238, 144 | lightgrey = 211, 211, 211 | lightpink = 255, 182, 193 | +-------------------------------+--------------------------------------+---------------------------------+--------------------------------+--------------------------------+ | lightsalmon = 255, 160, 122 | lightseagreen = 32, 178, 170 | lightskyblue = 135, 206, 250 | lightslategray = 119, 136, 153 | lightsteelblue = 176, 196, 222 | +-------------------------------+--------------------------------------+---------------------------------+--------------------------------+--------------------------------+ | lightyellow = 255, 255, 224 | lime = 0, 255, 0 | limegreen = 50, 205, 50 | linen = 250, 240, 230 | magenta = 255, 0, 255 | +-------------------------------+--------------------------------------+---------------------------------+--------------------------------+--------------------------------+ | maroon = 128, 0, 0 | mediumaquamarine = 102, 205, 170 | mediumblue = 0, 0, 205 | mediumorchid = 186, 85, 211 | mediumpurple = 147, 112, 219 | +-------------------------------+--------------------------------------+---------------------------------+--------------------------------+--------------------------------+ | mediumseagreen = 60, 179, 113 | mediumslateblue = 123, 104, 238 | mediumspringgreen = 0, 250, 154 | mediumturquoise = 72, 209, 204 | mediumvioletred = 199, 21, 133 | +-------------------------------+--------------------------------------+---------------------------------+--------------------------------+--------------------------------+ | midnightblue = 25, 25, 112 | mintcream = 245, 255, 250 | mistyrose = 255, 228, 225 | moccasin = 255, 228, 181 | navajowhite = 255, 222, 173 | +-------------------------------+--------------------------------------+---------------------------------+--------------------------------+--------------------------------+ | navy = 0, 0, 128 | oldlace = 253, 245, 230 | olive = 128, 128, 0 | olivedrab = 107, 142, 35 | orange = 255, 165, 0 | +-------------------------------+--------------------------------------+---------------------------------+--------------------------------+--------------------------------+ | orangered = 255, 69, 0 | orchid = 218, 112, 214 | palegoldenrod = 238, 232, 170 | palegreen = 152, 251, 152 | paleturquoise = 175, 238, 238 | +-------------------------------+--------------------------------------+---------------------------------+--------------------------------+--------------------------------+ | palevioletred = 219, 112, 147 | papayawhip = 255, 239, 213 | peachpuff = 255, 239, 213 | peru = 205, 133, 63 | pink = 255, 192, 203 | +-------------------------------+--------------------------------------+---------------------------------+--------------------------------+--------------------------------+ | plum = 221, 160, 221 | powderblue = 176, 224, 230 | purple = 128, 0, 128 | red = 255, 0, 0 | rosybrown = 188, 143, 143 | +-------------------------------+--------------------------------------+---------------------------------+--------------------------------+--------------------------------+ | royalblue = 65, 105, 225 | saddlebrown = 139, 69, 19 | salmon = 250, 128, 114 | sandybrown = 244, 164, 96 | seagreen = 46, 139, 87 | +-------------------------------+--------------------------------------+---------------------------------+--------------------------------+--------------------------------+ | seashell = 255, 245, 238 | sienna = 160, 82, 45 | silver = 192, 192, 192 | skyblue = 135, 206, 235 | slateblue = 106, 90, 205 | +-------------------------------+--------------------------------------+---------------------------------+--------------------------------+--------------------------------+ | slategray = 112, 128, 144 | snow = 255, 250, 250 | springgreen = 0, 255, 127 | steelblue = 70, 130, 180 | tan = 210, 180, 140 | +-------------------------------+--------------------------------------+---------------------------------+--------------------------------+--------------------------------+ | teal = 0, 128, 128 | thistle = 216, 191, 216 | tomato = 253, 99, 71 | turquoise = 64, 224, 208 | violet = 238, 130, 238 | +-------------------------------+--------------------------------------+---------------------------------+--------------------------------+--------------------------------+ | wheat = 245, 222, 179 | white = 255, 255, 255 | whitesmoke = 245, 245, 245 | yellow = 255, 255, 0 | yellowgreen = 154, 205, 50 | +-------------------------------+--------------------------------------+---------------------------------+--------------------------------+--------------------------------+ .. _liws: http://www.cfdem.com .. _ld: Manual.html .. _lc: Section_commands.html#comm